
Indian Institute of Technology Kharagpur

Department of Computer Science and Engineering

Reinforcement Learning (CS60077) Autumn Semester, 2022-2023

End-Semester Examination 25-Nov-2022 (Friday), 14:00–17:00 Maximum Marks: 100

Instructions:

• Write your answers in the answer booklet provided to you in the examination hall.

• There are a total of SIX questions. Marks are indicated in parentheses. All questions are compulsory.

Write the answers for all parts of a question together.

• Be brief and precise. Organize your work, in a reasonably neat and coherent way. Work scattered all

across the answer script without a clear ordering will receive very little marks.

• If you use any theorem / result / formula covered in the class, just mention it and do not elaborate and/or

prove (if not explicitly asked to do so).

• Write all the derivations / proofs / deductions in mathematically and/or logically precise language. Un-

clear and/or dubious statements would be severely penalized.

• Mysterious or unsupported answers will not receive full marks. A correct answer, unsupported by cal-

culations, explanation, will receive no marks; an incorrect answer supported by substantially correct

calculations and explanations may receive partial marks.

– The question paper starts from the next page –

— Page 1 of 11 —



Q1. [30 Marks] Choose all the correct answer(s) with a brief justification for each of them. No marks will be

awarded without justification or partially made choices (in case of multiple correct answers).

(a) Suppose we want an agent to learn to play the game of golf. For training purposes, we make use of

a golf simulator program. Assume that the original reward distribution gives a reward of +10 when

the golf ball is hit into the hole and −1 for all other transitions. To aid the agents learning process,

we propose to give an additional reward of +3 whenever the ball is within a 1-metre radius of the

hole. Is this additional reward a good idea or not? Why? (3)

(i) No, the additional reward may actually hinder learning

(ii) No, it violates the idea that a goal must be outside the agents direct control

(iii) Yes, the additional reward will help speed-up learning

(iv) Yes, getting the ball to within a metre of the hole is like a sub-goal and hence, should be

rewarded

(b) Consider a 100×100 grid world domain where the agent starts each episode in the bottom-left corner,

and the goal is to reach the top-right corner in the least number of steps. To learn an optimal policy

to solve this problem, you decide on a reward formulation in which the agent receives a reward of

+1 on reaching the goal state and 0 for all other transitions. Suppose you try two variants of this

reward formulation: (P1), where you use discounted returns with γ ∈ (0, 1), and (P2), where no

discounting is used (i.e., γ = 1). Which among the following would you expect to observe? (3)

(i) The same policy is learned in (P1) and (P2)

(ii) No policy learning in (P1)

(iii) No policy learning in (P2)

(iv) Policy learned in (P2) is better than the policy learned in (P1)

(c) Given a policy π over a Markov Decision Process (MDP) having state value function vπ(s) and

action value function qπ(s, a) over state s with action a, if qπ(s, a) > vπ(s), which of the following

can be concluded? (3)

(i) π is not an optimal policy

(ii) π may be an optimal policy

(iii) Action a is the best action that can be taken in state s

(iv) None of the above

(d) In the iterative policy evaluation process, we have seen the use of different update equations in

Dynamic Programming (DP), Monte-Carlo (MC), and Temporal Difference (TD) methods. With

regard to these update equations, which of the following statements is/are correct? (3)

(i) DP and TD make use of estimates but not MC

(ii) TD makes use of estimates but not DP and MC

(iii) MC and TD make use of estimates but not DP

(iv) All three methods make use of estimates

(e) Which among the following statements about LSTD and LSTDQ methods is/are incorrect? (3)

(i) LSTD learns the state value function

(ii) LSTDQ learns the action value function

(iii) Both LSTD and LSTDQ can reuse samples

(iv) Both LSTD and LSTDQ can be used along with tabular representations of value functions

(f) Suppose we are using a policy gradient method to solve a reinforcement learning problem. Assuming

that the policy returned by the method is not optimal, which among the following is/are not the

plausible reason(s) for such an outcome? (3)

(i) Search procedure converged to a locally optimal policy

(ii) Search procedure was terminated before it could reach the optimal policy

(iii) Sample trajectories arising in the problem were very long

(iv) Optimal policy could not be represented by the parameterization used to represent the policy

— Page 2 of 11 —



(g) For a given policy π, if fw approximates Qπ and is compatible with the parameterization used for

the policy, then this indicates that we can use fw in place of Qπ in the expression for calculating the

gradient of the policy performance metric with respect to the policy parameter. Which among the

following is/are appropriate reasons for this? (3)

(i) Qπ(s, a)− fw(s, a) = 0 in the direction of the gradient of fw(s, a)

(ii) Qπ(s, a)− fw(s, a) = 0 in the direction of the gradient of π(s, a)

(iii) The error between Qπ and fw is orthogonal to the gradient of the policy parameterization

(iv) The reason is not listed above

(h) After 12 iterations of the UCB 1 algorithm applied on a 4-arm bandit problem, we have n1 = 3, n2 =
4, n3 = 3, n4 = 2 and Q12(1) = 0.55, Q12(2) = 0.63, Q12(3) = 0.61, Q12(4) = 0.40. Which

arm should be played next? (3)

(i) 1

(ii) 2

(iii) 3

(iv) 4

(i) Consider the following problem design. You have a grid world with several rooms, as discussed in

the lectures, with the goal state in a corner cell of one of the rooms. You set up an agent with options

for exiting each of the rooms into the other. You also allow the agent to pick from the four primitive

actions. There is a step reward of−1. The learning algorithm used is SMDP Q-learning, with normal

Q-learning updates for the primitive actions. You expect the agent to learn faster due to the presence

of the options, but discover that it is not the case. Can you explain what might have caused this? (3)

(i) The options are not useful for solving the problem, hence caused the slowdown

(ii) Initially, the agent will focus more on using primitive actions, causing the slowdown

(iii) Due to the presence of options, we can no longer achieve the optimal solution, hence it takes

longer duration

(iv) It takes longer duration because we are using SMDP Q-learning compared to conventional

Q-learning which is faster

(j) Solving an hierarchical reinforment learning problem using the MAXQ approach leads to which of

the following type of solutions? (3)

(i) Hierarchically optimal

(ii) Recursively optimal

(iii) Flat optimal

(iv) Non-optimal

Solution:

(a) Correct Choice: (i)

In this specific case, the additional reward will be detrimental to the learning process, as the agent will

learn to accumulate rewards by keeping the ball within the 1 metre radius circle and not actually hitting

the ball in the hole. This example highlights the importance of being cautious in setting up the reward

function in order to prevent unintended consequences.

(b) Correct Choice: (iii)

In (P2), since there is no discounting, the return for each episode regardless of the number of steps is +1.

This prevents the agent from learning a policy which tries to minimise the number of steps to reach the

goal state. In (P1), the discount factor ensures that the longer the agent takes to reach the goal state, the

lesser reward it gets. This motivates the agent to find take the shortest path to the goal state.

— Page 3 of 11 —



(c) Correct Choice: (i)

The inequality indicates that there exists an action that if taken in state s, the expected return would be

higher than the expected return of taking actions in state s as per policy π. While this indicates that π is

not an optimal policy, it does not indicate that a is the best action that can be taken in state s, since there

may exist another action a′ such that qπ(s, a
′) > qπ(s, a).

(d) Correct Choice : (iv)

DP methods update estimates based on other learned estimates, i.e., they bootstrap. MC methods, while

they do not bootstrap, make use of estimates because the target in MC methods, i.e., the sample return,

is an estimate of the actual expected return; the expected value of course, is not known. TD methods use

both the above, i.e., they make use of samples of the expected values as well as bootstrap.

(e) Correct Choice: (iii)

Option (iii) is not correct. Given a set of samples collected from the actual process (not from a generative

model in which case reusing samples is perhaps not that important) it is useful for these samples to be

reused in evaluating different policies. Recall that LSPI is a policy iteration algorithm where the policy

is constantly being improved upon (and hence changing). Such sample reuse is possible in LSTDQ if for

any policy π, π(s′) is available for each s′ in the set of samples. This is because for different policies, the

same samples can be made use of, as individual policies only determine the φ(s′, π(s′)) component of Â.

This is not the case with LSTD where freedom in action choices is not available and must be determined

from the policy that is being evaluated.

(f) Correct Choice: (iii)

Option (iii) may result in an increase in the time it takes to converge to a policy, but does not necessarily

affect the optimality of the policy obtained.

(g) Correct Choices: (ii), (iii)

As indicated by options (ii) & (iii), we can use fw in place of Qπ if the difference between the two is

zero in the direction of the gradient of π(s, a).

(h) Correct Choice: (iv)

The next action, A13, will be the action with the maximum upper confidence bound among the four arms.

Calculating these values, we have

Q12(1) +

√

2 ln 12

n1
= 0.55 +

√

2 ln 12

3
= 1.837 Q12(2) +

√

2 ln 12

n2
= 0.63 +

√

2 ln 12

4
= 1.745

Q12(3) +

√

2 ln 12

n3
= 0.61 +

√

2 ln 12

3
= 1.897 Q12(4) +

√

2 ln 12

n4
= 0.40 +

√

2 ln 12

2
= 1.976

Clearly, arm 4 has the highest upper confidence bound and hence will be selected by the UCB 1 algorithm.

(i) Correct Choice: (ii)

Consider the contrast between selecting a primitive action and an option during the initial phase of learn-

ing in this problem. On selecting a primitive action from states near the start state or a doorway state,

you do not reach the goal state and get a unit of negative reward. On selecting an option, however, you

are transported to some doorway state (which is not the goal state) and get a negative reward of larger

magnitude (recall SMDP rewards). This suggests that initially, the primitive options will appear more

promising and will be explored more whereas the benefit of the options will not initially be realised or

exploited. Thus, the expected speedup would in general not be observed.

(j) Correct Choice: (ii)

Since the MAXQ policy of the core MDP is the set of policies of individual sub-tasks, with individual

sub-task policies aiming to solve the sub-tasks optimally, you can expect to obtain recursively optimal

solutions using the MAXQ approach.

— Page 4 of 11 —



Q2. [16 Marks] Let M = (S,A,R, P, γ) be an MDP with |S| < ∞, |A| < ∞ and γ ∈ [0, 1). Let M̂ be a

modification of M to be specified below. We shall compare the optimal value functions and policies in M

and M̂ . Assume that, V ∗ and V̂ ∗ are the optimal value functions in M and M̂ , respectively.

(a) Let M̂ = (S,A, R̂, P, γ) where |R̂(s, a) − R(s, a)| ≤ ǫ for all s ∈ S and a ∈ A. Besides the

rewards, all other components of M̂ stay the same as in M .

(i) Prove that, V ∗ − V̂ ∗ ≤ ǫ
1−γ

. (6)

(ii) Will M and M̂ have the same optimal policy? Briefly explain. (2)

(b) Now, let M̂ = (S,A, R̂, P, γ) where R̂(s, a) − R(s, a) = ǫ for all s ∈ S and a ∈ A for some

constant ǫ. Equivalently, the same constant ǫ is added to each reward R(s, a) to obtain R̂(s, a).

(i) How are V ∗ and V̂ ∗ related? Express V̂ ∗ in terms of V ∗. (5)

(ii) Will M and M̂ has the same optimal policy? Briefly explain. (3)

Solution:

(a) (i) Define the state s̃ as follows: s̃ = argmax
s

[

V ∗(s)− V̂ ∗(s)
]

Also, the inequality |R(s, a)− R̂(s, a)| ≤ ǫ implies: R(s, a) ≤ R̂(s, a) + ǫ, for all (s, a).

As a result:

V ∗(s̃) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

V ∗(s′)
]

≤ max
a∈A

[

R̂(s, a) + ǫ+ γ
∑

s′∈S

P
[

s′ | s, a
]{

V ∗(s′)− V̂ ∗(s′) + V̂ ∗(s′)
}

]

≤ max
a∈A

[

R̂(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

V̂ ∗(s′)
]

+max
a∈A

[

γ
∑

s′∈S

P
[

s′ | s, a
](

V ∗(s′)− V̂ ∗(s′)
)

]

+ ǫ

≤ V̂ ∗(s̃) + γ
[

V ∗(s̃)− V̂ ∗(s̃)
]

+ ǫ

Therefore, V ∗(s̃) ≤ V̂ ∗(s̃) + γ
[

V ∗(s̃)− V̂ ∗(s̃)
]

+ ǫ, implies V ∗(s̃)− V̂ ∗(s̃) ≤ ǫ
1−γ

.

Hence, for all states s ∈ S, we can say that V ∗(s)− V̂ ∗(s) ≤ ǫ
1−γ

.

(ii) V ∗(s) and V̂ ∗(s) do not necessarily have the same optimal policy. This is because the difference in

rewards does not necessarily preserve that ordering amongst actions in the state-action values.

(b) (i) For all s, V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

V ∗(s′)
]

Since ǫ
1−γ

= ǫ+ γ ǫ
1−γ

, therefore

V ∗(s) +
ǫ

1− γ
= max

a∈A

[

R(s, a) + ǫ+ γ
∑

s′∈S

P
[

s′ | s, a
](

V ∗(s′) + ǫ
)

]

=⇒ V ∗(s) +
ǫ

1− γ
= max

a∈A

[

R̂(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
](

V ∗(s′) + ǫ
)

]

As a result, for all s ∈ S: V̂ ∗(s) = V ∗(s) + ǫ
1−γ

.

(ii) In addition,

argmax
a∈A

[

R̂(s, a)+γ
∑

s′∈S

P
[

s′ | s, a)
]

V̂ ∗(s′)
]

= argmax
a∈A

[

R(s, a)+ǫ+γ
∑

s′∈S

P
[

s′ | s, a
](

V ∗(s′)+
ǫ

1− γ

)

]

argmax
a∈A

[

R(s, a)+γ
∑

s′∈S

P
[

s′ | s, a)
]

V ∗(s′)+ǫ+
ǫ

1− γ

]

= argmax
a∈A

[

R(s, a)+γ
∑

s′∈S

P
[

s′ | s, a
]

V ∗(s′)
]

So, M and M̂ will have the same optimal policy.

— Page 5 of 11 —



Q3. [14 Marks] Assume an underlying Markov Decision Process (MDP), M = (S,A, P,R, γ), where s, s′ ∈
S are the states of an MDP, a ∈ A denotes an action in MDP, r(s, a) = Ra

s denotes the reward accumulated

when applying action a to state s, P
[

s′ | s, a
]

= P a
ss′ denotes the transition probability to s′ from s upon

executing action a, and γ ∈ (0, 1] is the discount factor.

(a) The Bellman equations give us the iterative relations that relate the state value functions and the

action value functions. The Bellman expectation equations provide the relation between state value

function vπ and action value function qπ for any policy π, while the Bellman optimality equations

provide the relation between the optimal state value function v∗ and the optimal action value function

q∗. The two tables below require you to fill out the relations between the quantities marked in the

row and the column headings. (3 + 3)

(i) Fill up the missing entries from the table for Bellman Expectation Equations as given below.

vπ qπ
vπ vπ(s) = ? vπ(s) =

∑

a∈A
π(a|s)qπ(s, a)

qπ qπ(s, a) = ? qπ(s, a) = ?

(ii) Fill up the missing entries from the table for Bellman Optimality Equations as given below.

v∗ q∗
v∗ v∗(s) = ? v∗(s) = max

a∈A
q∗(s, a)

q∗ q∗(s, a) = ? q∗(s, a) = ?

Note: If you use notations and symbols different from this/class, explain them.

Hints: (1) Left hand side of the relations are functions of the current states or current states and

actions, while the right hand side may be functions of current and future values of these quantities.

(2) For your convenience one of the relations is provided in each of the table (They are, of course,

the easier ones!).

(b) Let π be an ǫ-greedy policy. Let π′ be the ǫ-greedy policy inferred from the action value function qπ
(ǫ-greedy Policy Improvement from π to π′), i.e.,

π′(a|s) =

{

1− ǫ+ ǫ
|A| , if a = argmax

b∈A
qπ(s, b)

ǫ
|A| , otherwise

Prove that,
∑

a∈A
π′(a|s).qπ(s, a) ≥ vπ(s), for all s ∈ S,

where vπ(s) is state value function for policy π. (8)

Solution:

(a) (i) The table for Bellman Expectation Equations is as follows:

vπ qπ

vπ vπ(s) =
∑

a∈A

π(a|s)
[

r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

vπ(s′)
]

vπ(s) =
∑

a∈A

π(a|s)qπ(s, a)

qπ qπ(s, a) = r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

vπ(s′) qπ(s, a) = r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

[

∑

a′∈A

π(a′|s′)qπ(s′, a′)
]

(ii) The table for Bellman Optimality Equations is as follows:

v∗ q∗

v∗ v∗(s) = max
a∈A

[

r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

v∗(s′)
]

v∗(s) = max
a∈A

q∗(s, a)

q∗ q∗(s, a) = r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

v∗(s′) q∗(s, a) = r(s, a) + γ
∑

s′∈S

P
[

s′ | s, a
]

max
a′∈A

q∗(s′, a′)

— Page 6 of 11 —



(b) It may be noted that,

∑

a∈A

π′(a|s).qπ(s, a) =
ǫ

m

∑

a∈A

qπ(s, a) + (1− ǫ)max
a∈A

qπ(s, a)

Now, we make the crucial observation that a max over choices of A is greater than or equal to a weighted

average over choices of A. Specifically,

max
a∈A

qπ(s, a) ≥
∑

a∈A

wa.qπ(s, a),

for any choice of weights wa ≥ 0, a ∈ A constrained by
∑

a∈A
wa = 1. We will make a specific choice of

wa as follows:

wa =
π(a|s)− ǫ

m

1− ǫ

We note that wa ≥ 0 for all a ∈ A because π(a|s) ≥ ǫ
m

(since π(a|s) is an ǫ-greedy policy). We also

note that,

∑

a∈A

wa =

∑

a∈A
π(a|s)−

∑

a∈A

ǫ
m

1− ǫ
=

1− ǫ

1− ǫ
= 1

Having established that,

max
a∈A

qπ(s, a) ≥
∑

a∈A

π(a|s)− ǫ
m

1− ǫ
.qπ(s, a)

we can go back to the initial equation and state that:

ǫ

m

∑

a∈A

qπ(s, a) + (1− ǫ)max
a∈A

qπ(s, a) ≥
ǫ

m

∑

a∈A

qπ(s, a) + (1− ǫ)
∑

a∈A

π(a|s)− ǫ
m

1− ǫ
.qπ(s, a)

Therefore,

∑

a∈A

π′(a|s).qπ(s, a) ≥
ǫ

m

∑

a∈A

qπ(s, a) + (1− ǫ)
∑

a∈A

π(a|s)− ǫ
m

1− ǫ
.qπ(s, a)

=
ǫ

m

∑

a∈A

qπ(s, a) +
∑

a∈A

π(a|s).qπ(s, a)−
ǫ

m

∑

a∈A

qπ(s, a)

=
∑

a∈A

π(a|s).qπ(s, a) = vπ(s)

Hence,
∑

a∈A
π′(a|s).qπ(s, a) ≥ vπ(s), for all s ∈ S. [Proved]

— Page 7 of 11 —



Q4. [14 Marks] Consider an episodic, deterministic chain MDP with n = 7 states assembled in a line. The

possible actions are, a ∈ {−1, 1}, and the transition function is deterministic such that s′ = s+ a, except

the fact that, taking a = −1 from s = 1 keeps us in s = 1, and taking a = 1 from s = 7 keeps us in

s = 7. We have a special goal state, s = 4, such that taking any action from s = 4 ends the episode with a

reward of r = 0. From all other states (i.e., s 6= 4 and 1 ≤ s ≤ 7), any action incurs a reward of r = −1.

We let γ = 1. The chain MDP is provided in Figure 1, with the goal state s = 4 marked as shaded.

s=7

r=−1
a=1
r=−1

a=1
r=−1

a=1
r=−1

a=1
r=−1

r=−1
a=−1

r=−1
a=−1

r=−1
a=−1

r=−1
a=−1

r=−1
a=−1

r=−1
a=−1 a=1

r=−1

a=−1
r=0

r=0
a=1

s=1 s=2 s=3 s=4 s=5 s=6

a=1

Figure 1: Chain MDP

(a) We wish to perform tabular Q-learning on this chain MDP. First, express clearly the Q-learning

state-action value update equation/rule, given a tuple (s, a, r, s′). (2)

Suppose we observe the following 4-step trajectory (in the form of 〈state, action, reward〉) as:

〈3,−1,−1〉; 〈2, 1,−1〉; 〈3, 1,−1〉; 〈4, 1, 0〉

Let all Q values are initialized to 0 (zero). Use the tabular Q-learning update to give updated values

for Q(3,−1), Q(2, 1), and Q(3, 1), assuming we process the trajectory in the order given from left

to right. Use the learning rate, α = 1
2 . (3)

(b) Now, we are interested in performing linear function approximation in conjunction with Q-learning.

In particular, we have a weight vector, w =
[

w1, w2, w3

]T
∈ R

3. Given some state s and action

a ∈ {−1, 1}, the featurization of this state, action pair is: φ =
[

s, a, 1
]T

. To compute Q-values,

we compute q̂(s, a;w) = wTφ = w0.s + w1.a + w2. Given the parameters w and a single sample

(s, a, r, s′), the loss function we will minimize is, J(w) =
(

r + γmax
a′

q̂(s′, a′;w−)− q̂(s, a;w)
)2

,

where q̂(s′, a′;w−) is a target network parametrized by fixed weights w−.

Suppose, you currently have weight vectors w =
[

− 1, 1, 1
]T

and w− =
[

1,−1,−2
]T

, and you

observe a sample, (s = 2, a = −1, r = −1, s′ = 1). Perform a single gradient update to the

parameters w given this sample. Use the learning rate α = 1
4 . Write out the gradient ∇wJ(w) as

well as the new parameters w′. Show all deductions clearly. (7)

(c) The optimal Q-function Q∗(s, a) is exactly representable by some neural network architecture N .

Suppose we perform Q-learning on this MDP using the architecture N to represent the Q-values.

Suppose we randomly initialize the weights of a neural net with architecture N and collect infinitely

many samples using an exploration strategy that is greedy in the limit of infinite exploration (GLIE).

Are we guaranteed to converge to the optimal Q function Q∗(s, a). Explain your answer. (2)

— Page 8 of 11 —



Solution:

(a) Given a tuple (s, a, r, s′), we use the update equation:

Q(s, a)← Q(s, a) + α
(

r + γ max
a′∈{−1,1}

Q(s′, a′)−Q(s, a)
)

Using this equation with α = 1
2 and γ = 1, we have:

Q(3,−1) ← 0 +
1

2

(

− 1 + max
a′

Q(2, a′)
)

=
1

2
(−1 + 0) = −

1

2

Q(2, 1) ← 0 +
1

2

(

− 1 + max
a′

Q(3, a′)
)

=
1

2
(−1 + 0) = −

1

2

Q(3, 1) ← 0 +
1

2

(

− 1 + max
a′

Q(4, a′)
)

=
1

2
(−1 + 0) = −

1

2

(b) The gradient of J(w) yields,

∇wJ(w) = −2
(

r + γmax
a′

q̂(s′, a′;w−)− q̂(s, a;w)
)

∇wq̂(s, a;w)

= −2
(

r +max
a′

(w−)T [s′, a′, 1]T − wT [s, a, 1]T
)

[s, a, 1]T

Using this, the parameter update with a single sample (s, a, r, s′) is:

w′ ← w −
1

2
α∇wJ(w)

= w +
1

4

(

r +max
a′

(w−)T [s′, a′, 1]T − wT [s, a, 1]T
)

[s, a, 1]T

Using the sample (2,−1,−1, 1) and the particular values of w and w− yields:

w′ ← [−1, 1, 1]T +
1

4

(

− 1 + max
a′

[1,−1,−2].[1, a′ , 1]T − [−1, 1, 1].[2,−1, 1]T
)

[2,−1, 1]T

= [−1, 1, 1]T +
1

4

(

− 1 + max
a′

(1− a′ − 2)− (−2− 1 + 1)
)

[2,−1, 1]T

= [−1, 1, 1]T +
1

4
[2,−1, 1]T =

[

−
1

2
,
3

4
,
5

4

]T

Note: Alternatively, the parameter update could also be written as: w′ ← w − α∇wJ(w).

This is also fine, and the subsequent answer obtained will be:

w′ ← [−1, 1, 1]T +
1

2
[2,−1, 1]T =

[

0,
1

2
,
3

2

]T

(c) Since this method of Q-learning involves function approximation, bootstrapping, and off-policy training

(the “deadly triad” according to Sutton & Barto book), we are not guaranteed to converge to anything,

which includes no guarantee of converging to the optimal Q-function.

— Page 9 of 11 —



Q5. [13 Marks] Consider a finite MDP with the set of finite state space denoted as S and a set of finite

actions space denoted as A. Let φ(s, a) =
[

φ1(s, a), φ2(s, a), . . . , φn(s, a)
]

be the features vector for

any s ∈ S, a ∈ A. Let θ =
[

θ1, θ2, . . . , θn
]

be an n-vector of parameters. Let the action probabilities

conditional on a given state s and given parameter vector θ be defined by the softmax function on the linear

combination of features: θT .φ(s, a), i.e.,

π(a|s; θ) =
eθ

T .φ(s,a)

∑

b∈A

eθ
T .φ(s,b)

(a) Evaluate the score function ∇θ log π(a|s; θ). Show the complete deduction. (6)

(b) Construct the action value function approximation Q(s, a;w) so that the following key constraint of

the Compatible Function Approximation Theorem (for Policy Gradient) is satisfied: (2)

∇wQ(s, a;w) = ∇θ log π(a|s; θ)

where w defines the parameters of the function approximation for the action-value function.

(c) Show that Q(s, a;w) has zero mean for any state s, i.e. show that,

Eπ

[

Q(s, a;w)
]

defined as
∑

a∈A
π(a|s; θ).Q(s, a;w) = 0. (5)

Solution:

(a)

log π(a|s; θ) = θT .φ(s, a) − log
(

∑

b∈A

eθ
T .φ(s,b)

)

∴

δ log π(a|s; θ)

δθi
= φi(s, a)−

∑

b∈A

φi(s, b).e
θT .φ(s,b)

∑

b∈A

eθ
T .φ(s,b)

= φi(s, a)−
∑

b∈A

eθ
T .φ(s,b)

∑

b∈A

eθ
T .φ(s,b)

.φi(s, b)

= φi(s, a)−
∑

b∈A

π(b|s; θ).φi(s, b)

= φi(s, a)− E
[

φi(s, ·)
]

Therefore, ∇θ log π(a|s; θ) = φ(s, a)− E
[

φ(s, ·)
]

(b) To satisfy the key constraint ∇wQ(s, a;w) = ∇θ log π(a|s; θ) of the Compatible Function Approxima-

tion Theorem, we let the features of Q(s, a;w) be ∇θ log π(a|s, θ) and we set Q(s, a;w) to be linear in

these features:

Q(s, a;w) = wT .∇θ log π(a|s; θ)

(c) Finally,

∑

a∈A

π(a|s; θ).Q(s, a;w) =
∑

a∈A

π(a|s; θ).wT .∇θ log π(a|s; θ)

=
∑

a∈A

wT .∇θπ(a|s; θ)

= wT .∇θ

(

∑

a∈A

π(a|s; θ)
)

= wT .∇θ1 = 0 [Proved]

— Page 10 of 11 —



Q6. [13 Marks] You are using Monte Carlo Tree Search (MCTS) to decide on the next action for a two-person

competitive game with 2 actions at each state (up and down). It is Player-1’s turn to play in state A. The

state expansion of the tree so far is as follows (each node consists of state identifier, n-value, and q-value):

up

up down

up

downup

A

B C

DEF

G HI

n=8
q=−1

n=6
q=2

n=3
q=−1

n=2
q=0

n=2
q=0

n=1
q=1

n=1
q=1

n=1
q=0

n=1
q=1

down

up

Recall that, the formula for the UCT value

for a node, v, is:

UCT (v) =
q(v)

n(v)
+ c

√

lnn(parent(v))

n(v)

where, n(v) and q(v) denote the n-value

and q-value for node v, and parent(v) in-

dicates the parent node of v.

Assume that, the constant c in the UCT

formula is given as, c = 1
2 .

Answer the following:

(a) What is the node that is next selected? Show your calculations/work in details. (5)

(b) What are the details of the node that gets expanded from the selected node? (1)

(c) Assuming that the simulation (rollout) from the expanded node gives a value of 1 (that is, Player-1

wins), show how the backup for that value is calculated to all of the affected nodes. (4)

(d) Assume that after this final rollout, we have run out of time to run the MCTS simulation and must

now choose an action for Player-1 from state A. What action will be chosen and why? (3)

Solution:

(a) We start at the root node, A.

Since A is fully expanded, we use the UCT formula for its children, B and C .

UCT (B) =
2

6
+

1

2

√

ln 8

6
= 0.63 and UCT (C) =

0

2
+

1

2

√

ln 8

2
= 0.51

Since UCT (B) > UCT (C), we move to node B.

Since B is fully expanded, we use the UCT formula for its children, F and E.

UCT (E) =
0

2
+

1

2

√

ln 6

2
= 0.47 and UCT (F ) =

−1

3
+

1

2

√

ln 6

3
= 0.05

Since UCT (E) > UCT (F ), we move to node E.

Since E is not fully expanded, E is the next selected node.

(b) We shall add a new node with action down to E (call it J) with n = 0 and q = 0.

(c) Since A is a state reached from Player-2 playing, B is a state reached from Player-1 playing, then E is a

state reached from Player-2 playing, and J is a state reached from Player-1 playing.

Thus, we shall increment q for states B and J , and decrement it for states A and E. We shall increment

n for states A, B, E, and J . So, the new values are as folows:

A : n = 9, q = −1− 1 = −2 B : n = 7, q = 2 + 1 = 3

E : n = 3, q = 0− 1 = −1 J : n = 1, q = 0 + 1 = 1

(d) If we are using highest n-value, we’ll choose action up, since that leads to state B and n(B) > n(C).

If we are using highest
q
n

-value, we’ll also choose action up, since that leads to state B and
q(B)
n(B) >

q(C)
n(C) .

— Page 11 of 11 —


