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Topics to be Discussed

How are numeric data items actually stored in computer memory?

How much space (memory locations) is allocated for each type of data?
• int, float, char, double, etc.

How are characters and strings stored in memory?
• Already discussed.
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Number System: The Basics

We are accustomed to using the so-called decimal number system.
• Ten digits ::  0,1,2,3,4,5,6,7,8,9
• Every digit position has a weight which is a power of 10.
• Base or radix is 10.

Example:

234 =  2 x 102  +  3 x 101  +  4 x 100

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +  6 x 10–1 +  7 x 10–2
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Binary Number System

Two digits:
• 0 and 1.
• Every digit position has a weight which is a power of 2.
• Base or radix is 2.

Example:

110      =  1 x 22  +  1 x 21  +  0 x 20

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +  0 x 2–1  +  1 x 2–2
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Binary-to-Decimal Conversion
Each digit position of a binary number has a weight.

• Some power of 2.

A binary number:
       B = bn–1 bn–2 … b1 b0 . b–1 b–2 … b–m

    Corresponding value in decimal:

       D = Σ    bi 2i

i = –m

n–1
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Examples

1. 101011  ⇒  1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20    =  43
  (101011)2 = (43)10

2. .0101      ⇒  0 x 2–1 + 1 x 2–2 + 0 x 2–3 + 1 x 2–4 =  .3125
  (.0101)2 = (.3125)10

3. 101.11    ⇒  1 x 22 + 0 x 21 + 1 x 20 + 1 x 2–1 + 1 x 2–2   =  5.75
  (101.11)2 = (5.75)10
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Decimal-to-Binary Conversion
Consider the integer and fractional parts separately.

For the integer part,

• Repeatedly divide the given number by 2, and go on accumulating the remainders, until 
the number becomes zero.

• Arrange the remainders in reverse order.
For the fractional part,

• Repeatedly multiply the given fraction by 2.
• Accumulate the integer part (0 or 1).
• If the integer part is 1, chop it off.

• Arrange the integer parts in the order they are obtained.
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Example 1  ::  239

2    239

2     119   --- 1

2    59    --- 1

2     29    --- 1

2    14    --- 1

2     7     --- 0

2    3     --- 1

2     1     --- 1

2     0     --- 1

(239)10 = (11101111)2
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Example 2  ::  64

2  64

2   32    --- 0

2  16    --- 0

2   8     --- 0

2  4     --- 0

2   2     --- 0

2  1     --- 0

2   0     --- 1

(64)10 = (1000000)2
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Example 3  ::  .634

.634  x  2   =   1.268

.268  x  2   =   0.536

.536  x  2   =   1.072

.072  x  2   =   0.144

.144  x  2   =   0.288

:

:

(.634)10 = (.10100…)2
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Example 4  ::  37.0625

(37)10 =  (100101)2

(.0625)10  =  (.0001)2

∴ (37.0625)10  =  (100101 . 0001)2
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Hexadecimal Number System

A compact way of representing binary numbers.

16 different symbols (radix = 16).

    0  ⇒  0000   8  ⇒  1000
    1  ⇒  0001   9  ⇒  1001
    2  ⇒  0010   A  ⇒  1010
    3  ⇒  0011   B  ⇒  1011
    4  ⇒  0100   C  ⇒  1100
    5  ⇒  0101   D  ⇒  1101
    6  ⇒  0110   E  ⇒  1110
    7  ⇒  0111   F  ⇒  1111
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Binary-to-Hexadecimal Conversion
For the integer part,

• Scan the binary number from right to left.
• Translate each group of four bits into the corresponding hexadecimal digit.

• Add leading zeros if necessary.

For the fractional part,
• Scan the binary number from left to right.
• Translate each group of four bits into the corresponding hexadecimal digit.

• Add trailing zeros if necessary.
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Examples
1. (1011 0100 0011)2   =   (B43)16

2. (10 1010 0001)2       =   (2A1)16

3. (.1000 010)2             =   (.84)16

4. (101 . 0101 111)2     =   (5.5E)16
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Hexadecimal-to-Binary Conversion
Translate every hexadecimal digit into its 4-bit binary equivalent.

• Discard leading and trailing zeros if desired.

Examples:
    (3A5)16      =   (0011 1010 0101)2

    (12.3D)16   =   (0001 0010 . 0011 1101)2

    (1.8)16        =   (0001 . 1000)2
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Representation of
Unsigned and Signed Integers
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Unsigned Binary Numbers
An n-bit binary number

   B  =  bn–1bn–2 … b2b1b0

• 2n distinct combinations are possible, 0 to 2n−1.

For example, for n = 3, there are 8 distinct combinations.
• 000, 001, 010, 011, 100, 101, 110, 111

Range of numbers that can be represented
    n = 8 ⇒  0  to  28−1  (255)
    n = 16 ⇒ 0  to  216−1 (65535)
    n = 32 ⇒ 0  to  232−1 (4294967295)
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Signed Integer Representation
Many of the numerical data items that are used in a program are signed (positive or negative).

• Question:: How to represent sign?

Three possible approaches:

a) Sign-magnitude representation

b) One’s complement representation
c) Two’s complement representation
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Sign-magnitude Representation
For an n-bit number representation

• The most significant bit (MSB) indicates sign
   0  ⇒  positive
   1  ⇒  negative

• The remaining n-1 bits represent magnitude.

b0b1bn-2bn–1

MagnitudeSign
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Contd.
Range of numbers that can be represented:

     Maximum  ::  + (2n-1 – 1)
     Minimum   ::  − (2n-1 – 1)

A problem:
     Two different representations of zero.

    +0   ⇒   0 000…0
    −0   ⇒   1 000…0
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One’s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.
• Negative numbers are represented in 1’s complement form.

How to compute the 1’s complement of a number?

• Complement every bit of the number (1à0 and 0à1).
• MSB will indicate the sign of the number.

   0  ⇒  positive
   1  ⇒  negative
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Example  ::  n = 4
0000  ⇒  +0

0001  ⇒  +1

0010  ⇒  +2

0011  ⇒  +3

0100  ⇒  +4

0101  ⇒  +5

0110  ⇒  +6

0111  ⇒  +7

1000  ⇒  -7

1001  ⇒  -6

1010  ⇒  -5

1011  ⇒  -4

1100  ⇒  -3

1101  ⇒  -2

1110  ⇒  -1

1111  ⇒  -0

To find the representation of, say, –4, first note that
        +4  =  0100
        −4   =  1’s complement of 0100  =  1011
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Contd.

Range of numbers that can be represented:
     Maximum  ::  + (2n–1 – 1)
     Minimum   ::  − (2n–1 – 1)

A problem:
     Two different representations of zero.

    +0   ⇒   0 000…0
    −0   ⇒   1 111…1

Advantage of 1’s complement representation
• Subtraction can be done using addition.
• Leads to substantial saving in circuitry.
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Two’s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.
• Negative numbers are represented in 2’s complement form.

How to compute the 2’s complement of a number?

• Complement every bit of the number (1à0 and à1), and then add one to the resulting 
number.

• MSB will indicate the sign of the number.
   0  ⇒  positive
   1  ⇒  negative
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Example  ::  n = 4
0000  ⇒  +0

0001  ⇒  +1

0010  ⇒  +2

0011  ⇒  +3

0100  ⇒  +4

0101  ⇒  +5

0110  ⇒  +6

0111  ⇒  +7

1000  ⇒  -8

1001  ⇒  -7

1010  ⇒  -6

1011  ⇒  -5

1100  ⇒  -4

1101  ⇒  -3

1110  ⇒  -2

1111  ⇒  -1

To find the representation of, say, –4, first note that
        +4  =  0100
        −4   =  2’s complement of 0100  =  1011+1  =  1100
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Contd.

Range of numbers that can be represented:
     Maximum  ::  + (2n–1 – 1)
     Minimum   ::  − 2n–1

Advantage:
•  Unique representation of zero.
•  Subtraction can be done using addition.
•  Leads to substantial saving in circuitry.

Almost all computers today use the 2’s complement representation for storing negative numbers.
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Contd.

In C, typically:
• char

• 8 bits   ⇒ + (27– 1)  to  –27

• short int
• 16 bits   ⇒   + (215−1)  to  −215

• int
• 32 bits   ⇒   + (231−1)  to  −231

• long int
• 64 bits   ⇒   + (263−1)  to  −263
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Binary operations

Addition / Subtraction using addition
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Binary addition
Rules for adding two bits

0 + 0  is  0
0 + 1  is  1
1 + 0  is  1
1 + 1  is 10, that is, 0 with carry of 1

Rules for adding three bits

 a b cin  cout   s
     __________________________________________
 0 0 0  0   0
 0 0 1  0   1
 0 1 0  0   1
 0 1 1  1   0
 1 0 0  0   1
 1 0 1  1   0
 1 1 0  1   0
 1 1 1  1   1
     __________________________________________
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Subtraction Using Addition :: 1’s Complement

How to compute A – B ?
• Compute the 1’s complement of B (say, B1).
• Compute R = A + B1 
• If the carry obtained after addition is ‘1’

• Add the carry back to R  (called end-around carry).
• That is, R = R + 1.
• The result is a positive number.

    Else
• The result is negative, and is in 1’s complement form.
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Example 1  ::  6 – 2
1’s complement of 2  =  1101

  6   ::   0110
 –2  ::   1101
          1 0011
                   1
             0100    ⇒  +4

End-around carry

Assume 4-bit representations.
Since there is a carry, it is added back to the 
result.
The result is positive.

R
B1

A
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Example 2  ::  3 – 5
1’s complement of 5  =  1010

  3   ::   0011
 –5  ::   1010
             1101                        

                   

Assume 4-bit representations.
Since there is no carry, the result is negative.
1101 is the 1’s complement of 0010, that is, it 
represents –2.

A
B1
R

–2
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Subtraction Using Addition :: 2’s Complement

How to compute A – B ?
• Compute the 2’s complement of B (say, B2).
• Compute R = A + B2 
• If the carry obtained after addition is ‘1’

• Ignore the carry.
• The result is a positive number.

    Else
• The result is negative, and is in 2’s complement form.
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Example 1  ::  6 – 2
2’s complement of 2  =  1101 + 1  =  1110

  6   ::   0110
 –2  ::   1110
          1 0100
                   
             

Assume 4-bit representations.
Presence of carry indicates that the result is 
positive.
No need to add the end-around carry like in 1’s 
complement.

A
B2
R

Ignore carry

+4
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Example 2  ::  3 – 5
2’s complement of 5  =  1010 + 1  =  1011

  3   ::   0011
 –5  ::   1011
             1110                      

                   Assume 4-bit representations.
Since there is no carry, the result is negative.
1110 is the 2’s complement of 0010, that is, it 
represents –2.

A
B2
R

-2
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▪  Example 1: 18 – 11 = ?
▪  18 is represented as 00010010
▪  11 is represented as 00001011

•  1’s complement of 11 is 11110100
•  2’s complement of 11 is 11110101

▪  Add 18 to 2’s complement of 11

00010010
+  11110101
----------------
    00000111 (with a carry of 1
                     which is ignored)

00000111 is 7

2’s complement arithmetic: More Examples
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▪  Example 2: 7 – 9 = ?
▪  7 is represented as 00000111
▪  9 is represented as 00001001

•  1’s complement of 9 is 11110110
•  2’s complement of 9 is 11110111

▪  Add 7 to 2’s complement of 9

00000111
+  11110111
----------------
    11111110 (with a carry of 0
                     which is ignored)

11111110 is –2

2’s complement arithmetic: More Examples
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Another equivalent condition :
 carry in and carry out from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100
        --------------
 (68) 01000100

carry (out)(in)
             0     0

(64)  01000000
(96)  01100000
        --------------
(-96) 10100000
carry  (out)(in)
              0     1

differ:
overflow

Adding two +ve (-ve) numbers  should not produce a –ve (+ve) number.
  If it does, overflow  (underflow) occurs

Overflow and Underflow
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Floating-point number representation
The IEEE 754 Format
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Fixed Point Representation
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Limitations of using Fixed Point Representation

Floating point numbers address this issue, and is made of fixed point
signed-magnitude number and an accompanying scale factor.
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Write a positive non-zero number as

1.b1b2b3…bk x 2E = (1 + b1 x 2–1 + b2 x 2–2 + b3 x 2–3 + … + bk x 2–k) x 2E

Examples

Original Number

+1010001.1101

–111.000011

+0.00000111001

–0.001110011

Normalized Representation

 + 1.0100011101 x 26

 – 1.11000011 x 22

 + 1.11001 x 2–6

 – 1.110011 x 2–3

Normalization

Move

← 6

← 2

6 →

3 →
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Normalized numbers in Single Precision Format
The normalized numbers are

 (–1)s 1.f x 2 E – 127.

Here, s is the sign bit, f is the mantissa (fractional part), and E is the exponent (plus 127).
The 1 before the binary point is not stored.
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IEEE standards for floating-point representation
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Solution

The sign is positive. The Excess_127 representation of the exponent is 133. 
You add extra 0s on the right to make it 23 bits. The number in memory is 
stored as:

    0   10000101 01000111001000000000000

Example

Show the representation of the normalized number + 1.01000111001 x 26.
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Sign

1

0

1

Mantissa

11000011000000000000000

11001000000000000000000

11001100000000000000000

Number 

 – 1.11000011 x 22

+ 1.11001 x 2–6

– 1.110011 x 2–3

Exponent

10000001

01111001

01111100

Example of floating-point representation
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Solution

Example

The sign is negative.
The exponent is 124 – 127  =  –3
The number is

–1.110011 x 2–3  =  – (1 + (½) + (½)2 + (½)5 + (½)6 ) x 2–3

=  1.796875 x 2–3  =  0.224609375.

Interpret the following 32-point floating-point number

1 01111100 11001100000000000000000
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Range of normalized numbers

underflow
overflow overflow

normalized
negative numbers 

normalized
positive numbers 
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Denormalized numbers
● These numbers correspond to the 8-bit exponent E = 0

● If M denotes the 23-bit mantissa, then the number is to be interpreted as:

(–1)S x 0.M x 2–126   =   (–1)S x M x 2–149

● The largest positive denormalized number is 11111111111111111111111 x 2–149 = (223 – 1) x 2–149 =

2–126 – 2–149. This is slightly smaller than the smallest normalized number.

● For each decrement of M by 1, the value of the denormalized number reduces by 2–149. The smallest positive 

denormalized number is 2–149 (corresponding to M = 00000000000000000000001).

● When all bits of M are zero, we get the representation of +0 as a string of 32 zero bits.

● –0 is represented as 1 followed by 31 zero bits.

● This process of going from 2–126 to 0 is called gradual underflow.
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Special numbers

These numbers correspond to the 8-bit exponent E = 255 (all 1 bits).

0 11111111 00000000000000000000000  +Inf
1 11111111 00000000000000000000000  –Inf
0 11111111 Any non-zero value   NaN
1 11111111 Any non-zero value   NaN

Inf means Infinity.
NaN means Not a Number.
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A program to view the floating-point representation
#include <stdio.h>

void prn32 ( unsigned a )

{

   int i;

   for (i=31; i>=0; --i) {

  printf("%d", (a & (1U << i)) ? 1 : 0 );

  if ((i == 31) || (i == 23)) printf(" ");

   }

   printf("\n");

}

int main ()

{

   float x = -123.45;

   unsigned *p;

   p = (unsigned *)&x;

   prn32(*p);

   return 0;

}

Output

1 10000101 11101101110011001100110
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Check for correctness
● 123 = 64 + 32 + 16 + 8 + 2 + 1 = 26 + 25 + 24 + 23 + 21 + 20 = 1111011

● 0.45 x 2 = 0.90, 0.90 x 2 = 1.80, 0.80 x 2 = 1.60, 0.60 x 2 = 1.20, 0.20 x 2 = 0.40, 0.40 x 2 = 0.80, …

● 0.45 = 0.0111001100

● 123.45 = 1111011.0111001100 ≈ 1111011.01110011001100110
= 1.11101101110011001100110 x 26

   = 1.11101101110011001100110 x 2133 – 127

   = 1.11101101110011001100110 x 2(128 + 4 + 1) – 127

   = 1.11101101110011001100110 x 210000101 – 127

● What we should have:  1 10000101 11101101110011001100110

● What the program gives: 1 10000101 11101101110011001100110 
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