
Number Systems
CS10003 PROGRAMMING AND DATA STRUCTURES

1INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Number Representation
BINARY
HEXADECIMAL
DECIMAL

2INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Topics to be Discussed

How are numeric data items actually stored in computer memory?

How much space (memory locations) is allocated for each type of data?
• int, float, char, double, etc.

How are characters and strings stored in memory?
• Already discussed.

3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Number System: The Basics

We are accustomed to using the so-called decimal number system.
• Ten digits :: 0,1,2,3,4,5,6,7,8,9
• Every digit position has a weight which is a power of 10.
• Base or radix is 10.

Example:

234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10–1 + 7 x 10–2

4

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary Number System

Two digits:
• 0 and 1.
• Every digit position has a weight which is a power of 2.
• Base or radix is 2.

Example:

110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2–1 + 1 x 2–2

5

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary-to-Decimal Conversion
Each digit position of a binary number has a weight.

• Some power of 2.

A binary number:
 B = bn–1 bn–2 … b1 b0 . b–1 b–2 … b–m

 Corresponding value in decimal:

 D = Σ bi 2i

i = –m

n–1

6

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Examples

1. 101011 ⇒ 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 43
 (101011)2 = (43)10

2. .0101 ⇒ 0 x 2–1 + 1 x 2–2 + 0 x 2–3 + 1 x 2–4 = .3125
 (.0101)2 = (.3125)10

3. 101.11 ⇒ 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2–1 + 1 x 2–2 = 5.75
 (101.11)2 = (5.75)10

7

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Decimal-to-Binary Conversion
Consider the integer and fractional parts separately.

For the integer part,

• Repeatedly divide the given number by 2, and go on accumulating the remainders, until
the number becomes zero.

• Arrange the remainders in reverse order.
For the fractional part,

• Repeatedly multiply the given fraction by 2.
• Accumulate the integer part (0 or 1).
• If the integer part is 1, chop it off.

• Arrange the integer parts in the order they are obtained.

8

Example 1 :: 239

2 239

2 119 --- 1

2 59 --- 1

2 29 --- 1

2 14 --- 1

2 7 --- 0

2 3 --- 1

2 1 --- 1

2 0 --- 1

(239)10 = (11101111)2

9INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 2 :: 64

2 64

2 32 --- 0

2 16 --- 0

2 8 --- 0

2 4 --- 0

2 2 --- 0

2 1 --- 0

2 0 --- 1

(64)10 = (1000000)2

10INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 3 :: .634

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288

:

:

(.634)10 = (.10100…)2

11INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 4 :: 37.0625

(37)10 = (100101)2

(.0625)10 = (.0001)2

∴ (37.0625)10 = (100101 . 0001)2

12INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Hexadecimal Number System

A compact way of representing binary numbers.

16 different symbols (radix = 16).

 0 ⇒ 0000 8 ⇒ 1000
 1 ⇒ 0001 9 ⇒ 1001
 2 ⇒ 0010 A ⇒ 1010
 3 ⇒ 0011 B ⇒ 1011
 4 ⇒ 0100 C ⇒ 1100
 5 ⇒ 0101 D ⇒ 1101
 6 ⇒ 0110 E ⇒ 1110
 7 ⇒ 0111 F ⇒ 1111

13

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary-to-Hexadecimal Conversion
For the integer part,

• Scan the binary number from right to left.
• Translate each group of four bits into the corresponding hexadecimal digit.

• Add leading zeros if necessary.

For the fractional part,
• Scan the binary number from left to right.
• Translate each group of four bits into the corresponding hexadecimal digit.

• Add trailing zeros if necessary.

14

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Examples
1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

15

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Hexadecimal-to-Binary Conversion
Translate every hexadecimal digit into its 4-bit binary equivalent.

• Discard leading and trailing zeros if desired.

Examples:
 (3A5)16 = (0011 1010 0101)2

 (12.3D)16 = (0001 0010 . 0011 1101)2

 (1.8)16 = (0001 . 1000)2

16

Representation of
Unsigned and Signed Integers

17INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Unsigned Binary Numbers
An n-bit binary number

 B = bn–1bn–2 … b2b1b0

• 2n distinct combinations are possible, 0 to 2n−1.

For example, for n = 3, there are 8 distinct combinations.
• 000, 001, 010, 011, 100, 101, 110, 111

Range of numbers that can be represented
 n = 8 ⇒ 0 to 28−1 (255)
 n = 16 ⇒ 0 to 216−1 (65535)
 n = 32 ⇒ 0 to 232−1 (4294967295)

18

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Signed Integer Representation
Many of the numerical data items that are used in a program are signed (positive or negative).

• Question:: How to represent sign?

Three possible approaches:

a) Sign-magnitude representation

b) One’s complement representation
c) Two’s complement representation

19

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Sign-magnitude Representation
For an n-bit number representation

• The most significant bit (MSB) indicates sign
 0 ⇒ positive
 1 ⇒ negative

• The remaining n-1 bits represent magnitude.

b0b1bn-2bn–1

MagnitudeSign

20

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Contd.
Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)
 Minimum :: − (2n-1 – 1)

A problem:
 Two different representations of zero.

 +0 ⇒ 0 000…0
 −0 ⇒ 1 000…0

21

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

One’s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.
• Negative numbers are represented in 1’s complement form.

How to compute the 1’s complement of a number?

• Complement every bit of the number (1à0 and 0à1).
• MSB will indicate the sign of the number.

 0 ⇒ positive
 1 ⇒ negative

22

Example :: n = 4
0000 ⇒ +0

0001 ⇒ +1

0010 ⇒ +2

0011 ⇒ +3

0100 ⇒ +4

0101 ⇒ +5

0110 ⇒ +6

0111 ⇒ +7

1000 ⇒ -7

1001 ⇒ -6

1010 ⇒ -5

1011 ⇒ -4

1100 ⇒ -3

1101 ⇒ -2

1110 ⇒ -1

1111 ⇒ -0

To find the representation of, say, –4, first note that
 +4 = 0100
 −4 = 1’s complement of 0100 = 1011

23INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Contd.

Range of numbers that can be represented:
 Maximum :: + (2n–1 – 1)
 Minimum :: − (2n–1 – 1)

A problem:
 Two different representations of zero.

 +0 ⇒ 0 000…0
 −0 ⇒ 1 111…1

Advantage of 1’s complement representation
• Subtraction can be done using addition.
• Leads to substantial saving in circuitry.

24

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Two’s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.
• Negative numbers are represented in 2’s complement form.

How to compute the 2’s complement of a number?

• Complement every bit of the number (1à0 and à1), and then add one to the resulting
number.

• MSB will indicate the sign of the number.
 0 ⇒ positive
 1 ⇒ negative

25

Example :: n = 4
0000 ⇒ +0

0001 ⇒ +1

0010 ⇒ +2

0011 ⇒ +3

0100 ⇒ +4

0101 ⇒ +5

0110 ⇒ +6

0111 ⇒ +7

1000 ⇒ -8

1001 ⇒ -7

1010 ⇒ -6

1011 ⇒ -5

1100 ⇒ -4

1101 ⇒ -3

1110 ⇒ -2

1111 ⇒ -1

To find the representation of, say, –4, first note that
 +4 = 0100
 −4 = 2’s complement of 0100 = 1011+1 = 1100

26INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Contd.

Range of numbers that can be represented:
 Maximum :: + (2n–1 – 1)
 Minimum :: − 2n–1

Advantage:
• Unique representation of zero.
• Subtraction can be done using addition.
• Leads to substantial saving in circuitry.

Almost all computers today use the 2’s complement representation for storing negative numbers.

27

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Contd.

In C, typically:
• char

• 8 bits ⇒ + (27– 1) to –27

• short int
• 16 bits ⇒ + (215−1) to −215

• int
• 32 bits ⇒ + (231−1) to −231

• long int
• 64 bits ⇒ + (263−1) to −263

28

Binary operations

Addition / Subtraction using addition

29INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary addition
Rules for adding two bits

0 + 0 is 0
0 + 1 is 1
1 + 0 is 1
1 + 1 is 10, that is, 0 with carry of 1

Rules for adding three bits

 a b cin cout s
 __
 0 0 0 0 0
 0 0 1 0 1
 0 1 0 0 1
 0 1 1 1 0
 1 0 0 0 1
 1 0 1 1 0
 1 1 0 1 0
 1 1 1 1 1
 __

30

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Subtraction Using Addition :: 1’s Complement

How to compute A – B ?
• Compute the 1’s complement of B (say, B1).
• Compute R = A + B1
• If the carry obtained after addition is ‘1’

• Add the carry back to R (called end-around carry).
• That is, R = R + 1.
• The result is a positive number.

 Else
• The result is negative, and is in 1’s complement form.

31

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 1 :: 6 – 2
1’s complement of 2 = 1101

 6 :: 0110
 –2 :: 1101
 1 0011
 1
 0100 ⇒ +4

End-around carry

Assume 4-bit representations.
Since there is a carry, it is added back to the
result.
The result is positive.

R
B1

A

32

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 2 :: 3 – 5
1’s complement of 5 = 1010

 3 :: 0011
 –5 :: 1010
 1101

Assume 4-bit representations.
Since there is no carry, the result is negative.
1101 is the 1’s complement of 0010, that is, it
represents –2.

A
B1
R

–2

33

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Subtraction Using Addition :: 2’s Complement

How to compute A – B ?
• Compute the 2’s complement of B (say, B2).
• Compute R = A + B2
• If the carry obtained after addition is ‘1’

• Ignore the carry.
• The result is a positive number.

 Else
• The result is negative, and is in 2’s complement form.

34

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 1 :: 6 – 2
2’s complement of 2 = 1101 + 1 = 1110

 6 :: 0110
 –2 :: 1110
 1 0100

Assume 4-bit representations.
Presence of carry indicates that the result is
positive.
No need to add the end-around carry like in 1’s
complement.

A
B2
R

Ignore carry

+4

35

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example 2 :: 3 – 5
2’s complement of 5 = 1010 + 1 = 1011

 3 :: 0011
 –5 :: 1011
 1110

 Assume 4-bit representations.
Since there is no carry, the result is negative.
1110 is the 2’s complement of 0010, that is, it
represents –2.

A
B2
R

-2

36

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

▪ Example 1: 18 – 11 = ?
▪ 18 is represented as 00010010
▪ 11 is represented as 00001011

• 1’s complement of 11 is 11110100
• 2’s complement of 11 is 11110101

▪ Add 18 to 2’s complement of 11

00010010
+ 11110101

 00000111 (with a carry of 1
 which is ignored)

00000111 is 7

2’s complement arithmetic: More Examples

37

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

▪ Example 2: 7 – 9 = ?
▪ 7 is represented as 00000111
▪ 9 is represented as 00001001

• 1’s complement of 9 is 11110110
• 2’s complement of 9 is 11110111

▪ Add 7 to 2’s complement of 9

00000111
+ 11110111

 11111110 (with a carry of 0
 which is ignored)

11111110 is –2

2’s complement arithmetic: More Examples

38

Another equivalent condition :
 carry in and carry out from Most Significant Bit (MSB) differ.

(64) 01000000
(4) 00000100

 (68) 01000100

carry (out)(in)
 0 0

(64) 01000000
(96) 01100000

(-96) 10100000
carry (out)(in)
 0 1

differ:
overflow

Adding two +ve (-ve) numbers should not produce a –ve (+ve) number.
 If it does, overflow (underflow) occurs

Overflow and Underflow

39INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Floating-point number representation
The IEEE 754 Format

40INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Fixed Point Representation

41

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Limitations of using Fixed Point Representation

Floating point numbers address this issue, and is made of fixed point
signed-magnitude number and an accompanying scale factor.

42

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Write a positive non-zero number as

1.b1b2b3…bk x 2E = (1 + b1 x 2–1 + b2 x 2–2 + b3 x 2–3 + … + bk x 2–k) x 2E

Examples

Original Number

+1010001.1101

–111.000011

+0.00000111001

–0.001110011

Normalized Representation

 + 1.0100011101 x 26

 – 1.11000011 x 22

 + 1.11001 x 2–6

 – 1.110011 x 2–3

Normalization

Move

← 6

← 2

6 →

3 →

43

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Normalized numbers in Single Precision Format
The normalized numbers are

 (–1)s 1.f x 2 E – 127.

Here, s is the sign bit, f is the mantissa (fractional part), and E is the exponent (plus 127).
The 1 before the binary point is not stored.

44

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

IEEE standards for floating-point representation

45

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Solution

The sign is positive. The Excess_127 representation of the exponent is 133.
You add extra 0s on the right to make it 23 bits. The number in memory is
stored as:

 0 10000101 01000111001000000000000

Example

Show the representation of the normalized number + 1.01000111001 x 26.

46

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Sign

1

0

1

Mantissa

11000011000000000000000

11001000000000000000000

11001100000000000000000

Number

 – 1.11000011 x 22

+ 1.11001 x 2–6

– 1.110011 x 2–3

Exponent

10000001

01111001

01111100

Example of floating-point representation

47

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Solution

Example

The sign is negative.
The exponent is 124 – 127 = –3
The number is

–1.110011 x 2–3 = – (1 + (½) + (½)2 + (½)5 + (½)6) x 2–3

= 1.796875 x 2–3 = 0.224609375.

Interpret the following 32-point floating-point number

1 01111100 11001100000000000000000

48

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Range of normalized numbers

underflow
overflow overflow

normalized
negative numbers

normalized
positive numbers

49

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Denormalized numbers
● These numbers correspond to the 8-bit exponent E = 0

● If M denotes the 23-bit mantissa, then the number is to be interpreted as:

(–1)S x 0.M x 2–126 = (–1)S x M x 2–149

● The largest positive denormalized number is 11111111111111111111111 x 2–149 = (223 – 1) x 2–149 =

2–126 – 2–149. This is slightly smaller than the smallest normalized number.

● For each decrement of M by 1, the value of the denormalized number reduces by 2–149. The smallest positive

denormalized number is 2–149 (corresponding to M = 00000000000000000000001).

● When all bits of M are zero, we get the representation of +0 as a string of 32 zero bits.

● –0 is represented as 1 followed by 31 zero bits.

● This process of going from 2–126 to 0 is called gradual underflow.

50

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Special numbers

These numbers correspond to the 8-bit exponent E = 255 (all 1 bits).

0 11111111 00000000000000000000000 +Inf
1 11111111 00000000000000000000000 –Inf
0 11111111 Any non-zero value NaN
1 11111111 Any non-zero value NaN

Inf means Infinity.
NaN means Not a Number.

51

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A program to view the floating-point representation
#include <stdio.h>

void prn32 (unsigned a)

{

 int i;

 for (i=31; i>=0; --i) {

 printf("%d", (a & (1U << i)) ? 1 : 0);

 if ((i == 31) || (i == 23)) printf(" ");

 }

 printf("\n");

}

int main ()

{

 float x = -123.45;

 unsigned *p;

 p = (unsigned *)&x;

 prn32(*p);

 return 0;

}

Output

1 10000101 11101101110011001100110

52

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Check for correctness
● 123 = 64 + 32 + 16 + 8 + 2 + 1 = 26 + 25 + 24 + 23 + 21 + 20 = 1111011

● 0.45 x 2 = 0.90, 0.90 x 2 = 1.80, 0.80 x 2 = 1.60, 0.60 x 2 = 1.20, 0.20 x 2 = 0.40, 0.40 x 2 = 0.80, …

● 0.45 = 0.0111001100

● 123.45 = 1111011.0111001100 ≈ 1111011.01110011001100110
= 1.11101101110011001100110 x 26

 = 1.11101101110011001100110 x 2133 – 127

 = 1.11101101110011001100110 x 2(128 + 4 + 1) – 127

 = 1.11101101110011001100110 x 210000101 – 127

● What we should have: 1 10000101 11101101110011001100110

● What the program gives: 1 10000101 11101101110011001100110

53

