
Searching in an array
CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Searching

Check if a given element (called key) occurs in the array.
• Example: array of student records; rollno can be the key.

Two methods to be discussed:
a) If the array elements are unsorted.

• Linear search
b) If the array elements are sorted.

• Binary search

2

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Concept of Linear Search

Basic idea
• Start at the beginning of the array.
• Inspect elements one by one to see if it matches the key.
• If a match is found, return the array index where the match was found.
• If no match is found, a special value is returned (like –1).

3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Linear Search (contd.)
Function linear_search returns the array index where a match is found.
It returns –1 if there is no match.

int linear_search (int a[], int size, int key)
{
 int pos = 0;
 while ((pos < size) && (key != a[pos]))
 pos++;
 if (pos < size)
 return pos; /* Return the position of match */
 return -1; /* No match found */
}

4

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Time Complexity of Linear Search

A measure of how many basic operations an algorithm needs to perform before terminating.

Example of basic operation: match / compare two elements.

• If there are n elements in the array:
• Best case:
 match found in first element (1 search operation)
• Worst case:
 no match found, or match found in the last element (n search operations)
• Average case: (n + 1) / 2 search operations

5

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary Search

6

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Concept

Binary search is applicable if the array is sorted.

Basic Idea
• Look for the target in the middle.
• If you don’t find the key, you can ignore half of the array, and repeat the process with the

other half.

In every step, we reduce, by a factor of two, the number of elements to search from.

7

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Basic Strategy
What do we want?
• Plan to find the array index between values larger and smaller than key:

• Situation while searching:
• Initially, the search window is the entire array, that is, L and R are initialized to the

indices of the first and the last elements.

• Look at the element at index [(L+R)/2].
• Discard one half of the search window depending on the outcome of test.

0

<= key > keyx:
n-1

L R

8

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Initialization and Return Value
int bin_search (int x[], int size, int key)
{
 int L, R, mid;
 L = 0; R = size - 1;
 while (L != R)
 {
 mid = (L + R) / 2;
 if (key <= x[mid]) R = mid;
 else L = mid + 1;
 }
 if (key == x[L])
 return L;
 else
 return -1;
}

If key appears in x[0…size–1], return its
location, pos such that x[pos]==key.

If not found, return –1

9

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Binary Search Examples

-17 -5 3 6 12 21 45 63 50

Trace
 bin_search (x, 9, 3); binsearch(x, 9, 2);

Sorted array

L R M key <= x[M]?
0 8 4 3 <= 12? [True]
0 4 2 3 <= 3? [True]
0 2 1 3 <= -5? [False]
2 2 [Loop terminates]
key == x[L]? [True]

We can modify the algorithm by checking equality with x[mid].

0 1 2 3 4 5 6 7 8

L R M key <= x[M]?
0 8 4 2 <= 12? [True]
0 4 2 2 <= 3? [True]
0 2 1 2 <= -5? [False]
2 2 [Loop terminates]
key == x[L]? [False]

10

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Another Version of Iterative Binary Search
int bin_search_1 (int x[], int size, int key)
{
 int L, R, mid;
 L = 0; R = size-1;
 while (L <= R)
 {
 mid = (L + R) / 2;
 if (key == x[mid]) return mid;
 if (key < x[mid]) R = mid - 1;
 else L = mid + 1;
 }
 return -1;

}

11

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Unsorted vs Sorted Array Search: Where’s the difference?

Suppose that the array x has 1000 elements.

Linear search
If key is a member of x, it would require about 500 comparisons on the average.

Binary search
• After 1st compare, left with 500 elements.
• After 2nd compare, left with 250 elements.
• After at most 10 steps, you are done.

12

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Time Complexity
If there are n elements in the array.
• Number of iterations required:
 log2n

For n = 64 (say).
• Initially, list size = 64.
• After first compare, list size = 32.
• After second compare, list size = 16.
• After third compare, list size = 8.
• …
• After sixth compare, list size = 1.

log264 = 6
log21024 = 10

2k = n, where k is the
number of steps.

13

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Recursive Version of Binary Search

The algorithm for binary search directly leads to a recursive formulation.
• The algorithm is called recursively by adjusting the left or right pointers, as applicable.

• The base condition is: the element is found, or the left and right pointers cross.

14

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

int binarySearch (int x[], int L, int R, int key)

{

 int mid;

 if (L <= R) {

mid = (L + R) / 2;

if (key == x[mid]) // If the element is present at the middle

return mid;

if (key < x[mid]) // Look into the left subarray

return binarySearch (x, L, mid-1, key);

else // Look into the right subarray

 return binarySearch (x, mid+1, R, key);

}

// Element is not present in array

return -1;

}
int result = binarySearch (arr, 0, n-1, key);
if (result == -1)

printf ("Key is not present in array\n");
else
 printf("Key is present at index %d\n", result);

Returns location of key in given array
arr[L … R] if present, otherwise –1

15

