
CS10003:

Programming & Data Structures

Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Autumn 2020

Queue

Queue

Data structure with First-In First-Out (FIFO) behavior

Queue

In
Out

A C B
A B

Data structure with First-In First-Out (FIFO) behavior

Typical Operations

on Queue

isempty: determines if the queue is empty

isfull: determines if the queue is full

 in case of a bounded size queue

front: returns the element at front of the queue

enqueue: inserts an element at the rear

dequeue: removes the element in front

Enqueue

Dequeue

REAR

FRONT

Queue using array

What do we need?

 1. An array to store the elements (of maximum size).

 2. Two integer variables (array index) to indicate front and rear.

#define MAXSIZE 100

struct queue

{

 int que[MAXSIZE];

 int front,rear;

};

typedef struct queue QUEUE;
Front Rear

 7 6 5 4 3 2 1 0

ENQUEUE

#define MAXSIZE 100

struct queue

{

 int que[MAXSIZE];

 int front,rear;

};

typedef struct queue QUEUE;

Increment rear

(array index)

Front Rear Rear

 7 6 5 4 3 2 1 0

DEQUEUE

#define MAXSIZE 100

struct queue

{

 int que[MAXSIZE];

 int front,rear;

};

typedef struct queue QUEUE;

Increment front

(array index)

Front Rear Front

 7 6 5 4 3 2 1 0

Problem with Array implementation

front rear rear

ENQUEUE

front

DEQUEUE

Effective queuing storage area of array gets reduced.

Use of circular array indexing

0 N

 The size of the queue depends on the number and order

of enqueue and dequeue.

 It may be situation where memory is available but

enqueue is not possible.

Possible Implementations

 Linear Arrays:

 (static/dynamicaly allocated)

front rear

 Circular Arrays:

 (static/dynamically allocated)

 Can be implemented by a 1-d

 array using modulus operations

front
rear

 Linked Lists: Use a linear

 linked list with insert_rear

 and delete_front operations

Circular Queue

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0

rear=0

Circular Queue

front=0 [0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After insertion

 of A, B, C, D
A

B

C D

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0

rear=0

Circular Queue

front=0 [0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After insertion

 of A, B, C, D
A

B

C D

front=2

[0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After deletion of

 of A, B

C D

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0

rear=0

front: index of queue-head (always empty – why?)

rear: index of last element, unless rear = front

Queue Empty Condition: front == rear

Queue Full Condition: front == (rear + 1) % MAX_Q_SIZE

front=0

rear=0

[0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

Queue Empty

front=4

Queue Full

rear = 3
[4]

[0]

[1]

[2]

[3]

[5]

[6]

[7]

Creating and Initializing a Circular

Queue

#define MAX_Q_SIZE 100

typedef struct {

 int key; /* just an example, can have

 any type of fields depending

 on what is to be stored */

} element;

typedef struct {

 element list[MAX_Q_SIZE];

 int front, rear;

 } queue;

 queue Q;

 Q.front = 0;

 Q.rear = 0;

Declaration

Create and Initialize

Operations

int isfull (queue *q)

{

 if (q->front == ((q->rear + 1) %

 MAX_Q_SIZE))

 return 1;

 return 0;

}

 int isempty (queue *q)

 {

 if (q->front == q->rear)

 return 1;

 return 0;

 }

Operations

void enqueue(queue *q, element e)

 {

 q->rear = (q->rear + 1)%

 MAX_Q_SIZE;

 q->list[q->rear] = e;

 }

void dequeue(queue *q)

 {

 q-> front =

 (q-> front + 1)%

 MAX_Q_SIZE;

 }

element front(queue *q)

 {

 return q->list[(q->front + 1) % MAX_Q_SIZE];

 }

Queue using linked list

 Create a linked list to which items would be

added to one end and deleted from the other

end.

 Two pointers will be maintained:

 One pointing to the beginning of the list (point from

where elements will be deleted).

 Another pointing to the end of the list (point where new

elements will be inserted).

Front

Rear

DELETION INSERTION

QUEUE: Insertion into a Linked List

front rear

ENQUEUE

QUEUE: Deletion from a Linked List

front rear

DEQUEUE

Free this node

QUEUE:: First-In-First-Out (FIFO)

Assume:: queue contains integer elements

 void enqueue (QUEUE *q, int element);
 /* Insert an element in the queue */

 int dequeue (QUEUE *q);
 /* Remove an element from the queue */

 queue *create();
 /* Create a new queue */

 int isempty (QUEUE *q);
 /* Check if queue is empty */

 int size (QUEUE *q);
 /* Return the no. of elements in queue */

int peek (QUEUE *q);

 /* dequeue without removing element*/

QUEUE

enqueue

create

dequeue

size

isempty

ADT

QUEUE using Linked List

struct qnode{

 int val;

 struct qnode *next;

 };

struct queue{

 struct qnode *qfront, *qrear;

 };

typedef struct queue QUEUE;

QUEUE:: First-In-First-Out (FIFO)

Assume:: queue contains integer elements

void enqueue (QUEUE *q,int element)

{

 struct qnode *q1;

 q1=(struct qnode *)malloc(sizeof(struct

qnode));

 q1->val= element;

 q1->next=q->qfront;

 q->qfront=q1;

}

QUEUE:: First-In-First-Out (FIFO)

Assume:: queue contains integer elements

int size (queue *q)

{

 queue *q1;

 int count=0;

 q1=q;

 while(q1!=NULL) {

 q1=q1->next;

 count++;

 }

 return count;

}

QUEUE:: First-In-First-Out (FIFO)

Assume:: queue contains integer elements

int peek (queue *q)

{

 queue *q1;

 q1=q;

 while(q1->next!=NULL)

 q1=q1->next;

 return (q1->val);

}

Implement this using

QUEUE data structure.

Implement this using

QUEUE data structure.

QUEUE:: First-In-First-Out (FIFO)

Assume:: queue contains integer elements

int dequeue (queue *q)

{

 int val;

 queue *q1,*prev;

 q1=q;

 while(q1->next!=NULL) {

 prev=q1;

 q1=q1->next;

 }

 val=q1->val;

 prev->next=NULL;

 free(q1);

 return (val);

} Implement this using

QUEUE data

structure.

Implement this using

QUEUE data

structure.

Applications of Queues

 Direct applications

 Waiting lists.

 Access to shared resources (e.g., printer).

 Multiprogramming.

 Indirect applications

 Auxiliary data structure for algorithms

 Component of other data structures

Example 6: Print first N Fibonacci Numbers

using a Queue

The queue initially contains 0 and 1

1 0

front rear

Example 7: Use a Stack to reverse a Queue

30 -5 18 14

front rear

14 18 -5 30

top

14 18 -5 30

front rear

Example 8: Create a new Queue with given

elements appended at the end of the Queue in a

reverse order

* Hint- You can use a stack in order to achieve the outcome

30 -5 18 14

front rear

14 18 -5 30

front rear

30 -5 18 14

Example 9: Implement a Stack using a Queue

data structure

For a given stack create a same size array which you are

going to use as a Queue.

Push and pop operation of stack’s should be emulated with

the Enqueue and Dequeue operation.

You can use an intermediate Queue for the above

implementation.

Homework

• Implement a Priority Queue which maintains the

items in an order (ascending/ descending) and

has additional functions like remove_max and

remove_min

• Maintain a Doctor’s appointment list

Thank You!

