
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

Stacks

Stacks and Basic Operations

 Property:
 Last-In First-Out (LIFO) Data Structure

 Typical Operations:
 isEmpty: determines if the stack has no elements
 isFull: determines if the stack is full

(in case of a bounded sized stack)
 top: returns the top element in the stack
 push: inserts an element into the stack
 pop: removes the top element from the stack

Push

Pop

A B C D

D C B A

Top D

C
B
A

3

Stacks and Basic Operations

 Implementation Aspects:

 Using Array
 Pre-declared size of elements

 Using Linked List
 top element is the head of the list
 push is like inserting at the front of the list
 pop is like deleting from the front of the list

Push

Pop

A B C D

D C B A

Top D

C
B
A

4

5

Basic Operations over Stacks
Initialization:
typedef struct stkArr{
int data[MAX];
int top;

} stack;

stack *s;
s->top = -1;

Emptiness Check:
int isEmpty (stack *s){
if(s->top == -1)
return 1;

else return 0;
}

Overflow Check:
int isFull (stack *s){
if (s->top >= MAX–1)
return 1;

else return 0;
}

Seek Top Element:
int top(stack *s){
if(!isEmpty(s))
return s->data[s->top];

}

Push Element:
void push(stack *s, int elm){
if(!isFull(s))
s->data[++(s->top)] = elm;

}

Pop Element:
void pop(stack *s){
if(!isEmpty(s))
--(s->top);

}

• Array based Implementation uses pre-defined fixed sized
(MAX) stack, whereas

• Linked-List requires little higher space (to keep extra
pointer to next node) for storing each element

Each operation
takes constant

time!

Applications: Parenthesis Matching Problem
 If Only ‘(’ and ‘)’ are allowed
 Can be found without using Stacks

 Keep a variable count and Increment or Decrement count
when ‘(’ or ‘)’ is encountered (ignore all other characters)

 Parenthesis Unbalanced if –
 count becomes less than zero at any intermediate point
 count is non-zero at end (Balanced only when count=0 at end)

 Example:
((() ()) ((()) ()))
1 2 3 2 3 2 1 2 3 4 3 2 3 2 1 0
(() () ((()))) (()
1 2 1 2 1 1 2 3 2 1 0 -1 0 1 0

6

Parenthesis Matching Problem: Revisited
 If ‘()’, ‘{ }’ and ‘[]’ all are allowed
 Three separate count variables (for each type of parenthesis)

will NOT do
 Check this Example: {2*(3+5}-[8-2)/3]
 Wrongly report Balanced if the above procedure is followed

 Solution: (use Stack)
 Push every opening parenthesis ‘(’, ‘{’ or ‘[’ into a stack
 For every closing parenthesis ‘)’, ‘}’ or ‘]’, pop the top element of the

stack and match for ‘(’, ‘{’ or ‘[’, respectively
 If any mismatch, flag Unbalanced
 Otherwise report Balanced at end

7

Applications: Arithmetic Expression Evaluation
 Arithmetic Expressions

 Infix (operator within operands):
c*(a + b)–(d + e)/f

 Prefix (operator before operands):
– * c + a b / + d e f

 Postfix (operator after operands):
c a b + * d e + f / –

 Example:
expr: (2+3)*4–5 23+4*5–

(Infix) (Postfix)

Standard Format

Evaluate Postfix Expression:
void postfixEval(Expression expr){
initialize stack S;
x get next token from expr;
while(x is NOT end of expr){

if(x is operand) push(S, x);
else{ // x is operator

if(!empty(S)){
x1 top(S); pop(S);

}
else exit with error;
if(!empty(S)){
x2 top(S); pop(S);

}
else exit with error;
result x1 <x> x2;
push(S, result);

}
x get next token from expr;

}
output(top(S)); pop(S);
if(!empty(S)) exit with error;

}

2

2

2
3

3

5

+

20

*

15

–

5
4

4

20
5

5

result 8

Applications: Expression Conversion
 Infix to Postfix Conversion

 Operands in same order
 Operators are rearranged
 Operators after operands
 Brackets are deleted

Operators are popped out from stack
whenever ISP ≥ ICP condition holds!

Evaluate Postfix Expression:
void infix_postfix(Expression expr){

initialize stack S; push(S,'#');
x get next token from expr;
while(x is NOT end of expr){

if(x is operand) output(x);
else if(x is ')'){
while((y=pop(S)) != '('){
output(y);

else{
while(ISP(y=pop(S)) >= ICP(x))
output(y);

}
x get next token from expr;

}
while((y=pop(S)) != '#')

output(y);
}

Symbol In-Stack
Priority (ISP)

In Coming
Priority

(ICP)
)
^ 3 4
* / 2 2

+ – 1 1
(0 4

Example Expressions
Infix:(((A/(B^C))+(D*E))–A*C)
Postfix: A B C ^ / D E * + A C * -

9

Example: Revisited
 Infix: (((A/(B^C))+(D*E))–A*C)

 Postfix: A B C ^ / D E * + A C * -

10

Symbol ISP ICP
)
^ 3 4
* / 2 2

+ – 1 1
(0 4

(
(
(

(
(
((

(
(
/

A
(
(
(
/
(

(
(
(
/
(
^

B
(
(
(
/

C ^

(
(

/

+
(
(

D
(
(
+

*

*
(

-
(

*
-
(

A
(

(

+
((

E
(
(
+

+ C * -

)

)
)

))

Recursions use Stacks Implicitly!
 Fibonacci Number Computation (using Recursion)

 Recurrence: Fib(n) = Fib(n-1) + Fib(n-2), if n > 1 and Fib(0) = Fib(1) = 1

fib (5)

fib (3) fib (4)

fib (1)

fib (2)fib (1) fib (2)

fib (0)

fib (3)

fib (1)

fib (1) fib (2)

fib (0)

fib (0) fib (1)

5 4
3

4
2
1

4
2

4
1
0

4
1

4 3
2

3
1
0

0 0 0 1 1 2 3 3 3

3
1

3 2
1

2 1
0

1
4 5 5 6 6 7 8

Fibonacci Recursion Stack

Fibonacci Recursion Tree

Nested Recursive
Function Calls use

Stacks to Store
Return Addresses

11

12

Recursions use Stacks Implicitly!
 Tower of Hanoi (TOH)
void towers (int n, char from, char to, char aux)
{

/* Base Condition */
if (n==1) {

printf ("Disk 1 : %c -> %c \n", from, to);
return ;

}
/* Recursive Condition */
towers (n-1, from, aux, to);
printf ("Disk %d : %c -> %c\n", n, from, to);
towers (n-1, aux, to, from);

}

3,A,B,C

2,A,C,B
A to B

2,C,B,A

1,A,B,C
A to C

1,B,C,A
A to B

2,C,B,A

A to B
A to C

1,B,C,A
A to B

2,C,B,A

A to C
1,B,C,A
A to B

2,C,B,A

1,B,C,A
A to B

2,C,B,A

B to C
A to B

2,C,B,A
A to B

2,C,B,A 2,C,B,A

1,C,A,B
C to B

1,A,B,C

TOH Recursion Stack

A B C

A B C

A B C

A B C

Thank You!

	Slide Number 1
	Stacks
	Stacks and Basic Operations
	Stacks and Basic Operations
	Basic Operations over Stacks
	Applications: Parenthesis Matching Problem
	Parenthesis Matching Problem: Revisited
	Applications: Arithmetic Expression Evaluation
	Applications: Expression Conversion
	Example: Revisited
	Recursions use Stacks Implicitly!
	Recursions use Stacks Implicitly!
	Slide Number 13

