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Algorithm Analysis
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What is an algorithm ?

• A clearly specifiable set of instructions 
– to solve a problem

• Given a problem

– decide that the algorithm is correct

• Determine how much resource the algorithm will 
require

– Time

– Space
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Analysis of Algorithms

• How much resource is required ?

• Measures for efficiency
– Execution time   time complexity

– Memory space   space complexity

• Observation :
– The larger amount of input data an algorithm has, 

the larger amount of resource it requires.

• Complexities are functions of the amount of input data 
(input size).
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What do we use for a yardstick?

• The same algorithm will run at different speeds 
and will require different amounts of space 
when run on different computers, different 
programming languages, different compilers.

• But algorithms usually consume resources in 
some fashion that depends on the size of the 
problem they solve : n.
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Sorting integers

void sort (int A[], int N)
{

int i, j, x;
for (i=1; i<N; i++)

     {
x = A[i];
for (j=i; j>0 && x<A[j-1]; j- -)

A[j] = A[j-1];
A[j] = x;

}
}
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• We run this sorting algorithm on two different 
computers, and note the time  (in ms) for 
different sizes of input.

Array size n Computer 1 Computer 2

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 72.9

2000 3114.9 690.5
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Contd.

• Computer 1:
f1(n) = 0.0007772 n2 + 0.00305 n + 0.001

• Computer 2 :
f2(n) = 0.0001724 n2 + 0.00040 n + 0.100

– Both are quadratic function of n.

– The shape of the curve that expresses the running 
time as a function of the problem size stays the 
same.
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Complexity classes

• The running time for different algorithms fall 
into different complexity classes.
– Each complexity class is characterized by a different 

family of curves.

– All curves in a given complexity class share the same 
basic shape.

• The O-notation is used for talking about the 
complexity classes of algorithms.
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Introducing the language of O-notation

• For the quadratic function
             f(n) = an2 + bn + c
we will say that f(n) is O(n2).

– We focus on the dominant term, and ignore the 
lesser terms; then throw away the coefficient.
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Mathematical background

• T(N) = O(f(N)) if there are positive constants c and n0 such 

that T(N)  c f(N) when N  n0.
Meaning : As N increases, T(N) grows no faster 

  than f(N).
The function T is eventually bounded by some multiple of 
f(N). f(N) gives an upper bound in the behavior of T(N).

• T(N) = (g(N)) if there are positive constants c and n0 such 
that T(N) c f(N) when N  n0.

 Meaning : As N increases, T(N) grows no slower     
than g(N) ; T(N) grows at least as fast as g(N).
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Contd.

• T(N) = (h(N)) if and only if T(N) = O (h(N))   

                                              and T(N) = (h(N))
Meaning : As N increases, T(N) grows as fast as  

  h(N).

• T(N) = o(p(N)) if T(N) = O(p(N)) and 

                                 T(N)  (p(N)) 
Meaning : As N increases, T(N) grows slower than   

  p(N). lim nT(N)/p(N) = 0.
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Examples

• logen = O(n)

• n10 = o(2n)

• 3 n2 + 5n + 1 = (n2)
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Concepts in Analysis

1. Worst Case

2. Average case (expected value)

3. Operator count

Why is the analysis of algorithms important ? 
Can advance on hardware overcome inefficiency 

of your algorithm ?

        NO ! 
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Model of computation

• A normal computer, instructions executed 
sequentially.
– addition, multiplication, comparison, assignment, 

etc.

– all are assumed to take a single time unit.
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Running time of algorithms

Assume speed S is 107 instructions per second.

size 
n 

10 20 30 50 100 1000 10000 

n .001 
ms 

.002 
ms 

.003 
ms 

.005 
ms 

.01 
ms 

.1 ms 1 ms 

nlogn
 

.003 
ms 

.008 
ms 

.015 
ms 

.03 
ms 

.07 
ms 

1 ms 13 ms 

n2 .01 
ms 

.04 
ms 

.09 
ms 

.25 
ms 

1 ms 100 
ms 

10 s 

n3 .1 
ms 

.8  
ms 

2.7 
ms 

12.5 
ms 

100 
ms 

100 s 28 h 

2n .1 
ms 

.1 s 100 s 3 y 3x 

10
13

c 

inf inf 
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Maximum size solvable within 1 hour

    speed 
complexity 

    S 100 S 1000 S 

n N1 = 

3.6x10
10 

100 N1 1000 N1 

n log n N2 = 

1.2x10
9 

85 N2 750 N2 

n2 N3 = 

2x10
5 

10 N3 30 N3 

2n N4 = 35 N4+7 N4+10 
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Observations

• There is a big difference between polynomial 
time complexity and exponential time 
complexity.

• Hardware advances affect only efficient 
algorithms and do not help inefficient 
algorithms.
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Maximum subsequence sum problem

• Given (possibly negative) integers 
<A1 A2 . . . AN> find the maximum value of  

j
k=i Ak . 

– For convenience, the maximum subsequence sum is 
considered to be 0 if all the integers are negative.

• Example : 
– For input <-2,11,-4,13,-5,2> the answer is 20 (A2 to 

A4)
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Algorithm 1

int MaxSubSum (int A[], int N)  {
int thissum, maxsum, i,j,k;

1. maxsum = 0;
2. for (i=0; i<N; i++) 
3.   for (j=i; j<N; j++) {
4.      thissum = 0;
5.        for (k=i; k <= j; k++)
6.           thissum += A[k];
7.        if (thissum > maxsum)
8.           maxsum = thissum;

}
9. return maxsum;

}
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• The loop at line 2 is of size N.

• The second loop has size N-i.

• The third loop has size j-i+1

• Total  : about N3 steps

j
k=i 1 = j-i+1

N-1   
i (j-i+1) = (N-i+1)(N-i)/2

N-1
i=0 (N-i+1)(N-i)/2 = (N3 + 3N2 + 2N}/6

j=
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Improve the running time

• Remove the second for loop

• Observe : 

 j
k=i Ak = Aj + j-1

k=i Ak 
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Algorithm 2
int MaxSubSum2 (int A[], int N)  
{

int thissum, maxsum, i, j;
1. maxsum = 0;
2. for (i=0; i<N; i++)
3. { 
3. thissum = 0;
4.       for (j=i; j < N; j++)
5.       {
5.      thissum += A[j];
6.      if (thissum > maxsum)
7. maxsum = thissum;

}
}

8. return maxsum;

}

Complexity : 

O(N2)
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Recursive algorithm

• Divide & Conquer : 
– Divide: Split the problem into two roughly equal 

subproblems, and solve recursively.

– Conquer: Patch together the 2 solutions of the 
subproblems, and some additional work to get a 
solution for the whole problem. 
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Divide & Conquer

• The maximum subsequence sum can be in one 
of three places : 
–  occurs entirely in the left half of the input
–  occurs entirely in the right half
–  crosses the middle and is in both halves.

• 1 & 2 can be solved recursively
• 3 can be solved by finding the largest sum in the first 

half that includes the last element of the first half, and 
the largest element in the 2nd half that includes the 1st 
element in the 2nd half, and adding the two.
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   First half          Second half 
4   -3     5  -2     -1   2     6   -2
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Algorithm 3
int maxsum (int A[], int left, int right)  {

int maxlsum, maxrtsum, maxlbsum, maxrbsum, lbsum,rbsum;

 int i, centre;

1. if (left == right)

2. if (A[left]>0) return A[left];

3. else return 0;

4. centre = (left + right)/2;

5. maxlsum = maxsubsum(A,left,center);

6. maxrtsum = maxsubsum(A, center+1, right); 

7. maxlbsum = lbsum = 0;

8. for (i=centre; i>=left; i--) {

9. lbsum += A[i];

10.if (lbsum > maxlbsum) maxlbsum = lbsum;

}
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Algorithm 3 : continued

11 maxrbsum = rbsum = 0;

12 for (i=centre+1; i<=right; i++) {

13 rbsum += A[i];

14 if (rbsum > maxrbsum) maxrbsum = rbsum;

}

15 return max(maxlsum, maxrtsum, maxlbsum + maxrbsum);

}

int maxsubsum3 (int A[], int N) {

return maxsum (A, 0, N-1);

}
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Complexity

• T(1) = 1

• T(N) = 2 T(N/2) + O(N)
        = 2 T(N/2) + cN
 T(2) = 4
 T(4) = 12
 T (2k) = N*(k+1) = N log N + N
          = O (N log N)
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Algorithm 4

int MaxSubSum4 (int A[], int N)  

{

int thissum, maxsum,  j;

1. thissum = maxsum = 0;

2. for (j=0; j<N; j++) { 

3. thissum += A[j];

4. if (thissum > maxsum)

5. maxsum = thissum;

6. else if (thissum < 0)

7. thissum = 0;

}

8. return maxsum;

}

Complexity : 
O(N)



Thank You!
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