
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

Algorithm Analysis

3

What is an algorithm ?

• A clearly specifiable set of instructions
– to solve a problem

• Given a problem

– decide that the algorithm is correct

• Determine how much resource the algorithm will
require

– Time

– Space

4

Analysis of Algorithms

• How much resource is required ?

• Measures for efficiency
– Execution time  time complexity

– Memory space  space complexity

• Observation :
– The larger amount of input data an algorithm has,

the larger amount of resource it requires.

• Complexities are functions of the amount of input data
(input size).

5

What do we use for a yardstick?

• The same algorithm will run at different speeds
and will require different amounts of space
when run on different computers, different
programming languages, different compilers.

• But algorithms usually consume resources in
some fashion that depends on the size of the
problem they solve : n.

6

Sorting integers

void sort (int A[], int N)
{

int i, j, x;
for (i=1; i<N; i++)

 {
x = A[i];
for (j=i; j>0 && x<A[j-1]; j- -)

A[j] = A[j-1];
A[j] = x;

}
}

7

• We run this sorting algorithm on two different
computers, and note the time (in ms) for
different sizes of input.

Array size n Computer 1 Computer 2

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 72.9

2000 3114.9 690.5

8

Contd.

• Computer 1:
f1(n) = 0.0007772 n2 + 0.00305 n + 0.001

• Computer 2 :
f2(n) = 0.0001724 n2 + 0.00040 n + 0.100

– Both are quadratic function of n.

– The shape of the curve that expresses the running
time as a function of the problem size stays the
same.

9

Complexity classes

• The running time for different algorithms fall
into different complexity classes.
– Each complexity class is characterized by a different

family of curves.

– All curves in a given complexity class share the same
basic shape.

• The O-notation is used for talking about the
complexity classes of algorithms.

10

Introducing the language of O-notation

• For the quadratic function
 f(n) = an2 + bn + c
we will say that f(n) is O(n2).

– We focus on the dominant term, and ignore the
lesser terms; then throw away the coefficient.

11

Mathematical background

• T(N) = O(f(N)) if there are positive constants c and n0 such

that T(N)  c f(N) when N  n0.
Meaning : As N increases, T(N) grows no faster

 than f(N).
The function T is eventually bounded by some multiple of
f(N). f(N) gives an upper bound in the behavior of T(N).

• T(N) = (g(N)) if there are positive constants c and n0 such
that T(N) c f(N) when N  n0.

 Meaning : As N increases, T(N) grows no slower
than g(N) ; T(N) grows at least as fast as g(N).

12

Contd.

• T(N) = (h(N)) if and only if T(N) = O (h(N))

 and T(N) = (h(N))
Meaning : As N increases, T(N) grows as fast as

 h(N).

• T(N) = o(p(N)) if T(N) = O(p(N)) and

 T(N)  (p(N))
Meaning : As N increases, T(N) grows slower than

 p(N). lim nT(N)/p(N) = 0.

13

Examples

• logen = O(n)

• n10 = o(2n)

• 3 n2 + 5n + 1 = (n2)

14

Concepts in Analysis

1. Worst Case

2. Average case (expected value)

3. Operator count

Why is the analysis of algorithms important ?
Can advance on hardware overcome inefficiency

of your algorithm ?

  NO !

15

Model of computation

• A normal computer, instructions executed
sequentially.
– addition, multiplication, comparison, assignment,

etc.

– all are assumed to take a single time unit.

16

Running time of algorithms

Assume speed S is 107 instructions per second.

size
n

10 20 30 50 100 1000 10000

n .001
ms

.002
ms

.003
ms

.005
ms

.01
ms

.1 ms 1 ms

nlogn

.003
ms

.008
ms

.015
ms

.03
ms

.07
ms

1 ms 13 ms

n2 .01
ms

.04
ms

.09
ms

.25
ms

1 ms 100
ms

10 s

n3 .1
ms

.8
ms

2.7
ms

12.5
ms

100
ms

100 s 28 h

2n .1
ms

.1 s 100 s 3 y 3x

10
13

c

inf inf

17

Maximum size solvable within 1 hour

 speed
complexity

 S 100 S 1000 S

n N1 =

3.6x10
10

100 N1 1000 N1

n log n N2 =

1.2x10
9

85 N2 750 N2

n2 N3 =

2x10
5

10 N3 30 N3

2n N4 = 35 N4+7 N4+10

18

Observations

• There is a big difference between polynomial
time complexity and exponential time
complexity.

• Hardware advances affect only efficient
algorithms and do not help inefficient
algorithms.

19

Maximum subsequence sum problem

• Given (possibly negative) integers
<A1 A2 . . . AN> find the maximum value of

j
k=i Ak .

– For convenience, the maximum subsequence sum is
considered to be 0 if all the integers are negative.

• Example :
– For input <-2,11,-4,13,-5,2> the answer is 20 (A2 to

A4)

20

Algorithm 1

int MaxSubSum (int A[], int N) {
int thissum, maxsum, i,j,k;

1. maxsum = 0;
2. for (i=0; i<N; i++)
3. for (j=i; j<N; j++) {
4. thissum = 0;
5. for (k=i; k <= j; k++)
6. thissum += A[k];
7. if (thissum > maxsum)
8. maxsum = thissum;

}
9. return maxsum;

}

21

• The loop at line 2 is of size N.

• The second loop has size N-i.

• The third loop has size j-i+1

• Total : about N3 steps

j
k=i 1 = j-i+1

N-1
i (j-i+1) = (N-i+1)(N-i)/2

N-1
i=0 (N-i+1)(N-i)/2 = (N3 + 3N2 + 2N}/6

j=

22

Improve the running time

• Remove the second for loop

• Observe :

 j
k=i Ak = Aj + j-1

k=i Ak

23

Algorithm 2
int MaxSubSum2 (int A[], int N)
{

int thissum, maxsum, i, j;
1. maxsum = 0;
2. for (i=0; i<N; i++)
3. {
3. thissum = 0;
4. for (j=i; j < N; j++)
5. {
5. thissum += A[j];
6. if (thissum > maxsum)
7. maxsum = thissum;

}
}

8. return maxsum;

}

Complexity :

O(N2)

24

Recursive algorithm

• Divide & Conquer :
– Divide: Split the problem into two roughly equal

subproblems, and solve recursively.

– Conquer: Patch together the 2 solutions of the
subproblems, and some additional work to get a
solution for the whole problem.

25

Divide & Conquer

• The maximum subsequence sum can be in one
of three places :
– occurs entirely in the left half of the input
– occurs entirely in the right half
– crosses the middle and is in both halves.

• 1 & 2 can be solved recursively
• 3 can be solved by finding the largest sum in the first

half that includes the last element of the first half, and
the largest element in the 2nd half that includes the 1st
element in the 2nd half, and adding the two.

26

 First half Second half
4 -3 5 -2 -1 2 6 -2

27

Algorithm 3
int maxsum (int A[], int left, int right) {

int maxlsum, maxrtsum, maxlbsum, maxrbsum, lbsum,rbsum;

 int i, centre;

1. if (left == right)

2. if (A[left]>0) return A[left];

3. else return 0;

4. centre = (left + right)/2;

5. maxlsum = maxsubsum(A,left,center);

6. maxrtsum = maxsubsum(A, center+1, right);

7. maxlbsum = lbsum = 0;

8. for (i=centre; i>=left; i--) {

9. lbsum += A[i];

10.if (lbsum > maxlbsum) maxlbsum = lbsum;

}

28

Algorithm 3 : continued

11 maxrbsum = rbsum = 0;

12 for (i=centre+1; i<=right; i++) {

13 rbsum += A[i];

14 if (rbsum > maxrbsum) maxrbsum = rbsum;

}

15 return max(maxlsum, maxrtsum, maxlbsum + maxrbsum);

}

int maxsubsum3 (int A[], int N) {

return maxsum (A, 0, N-1);

}

29

Complexity

• T(1) = 1

• T(N) = 2 T(N/2) + O(N)
 = 2 T(N/2) + cN
 T(2) = 4
 T(4) = 12
 T (2k) = N*(k+1) = N log N + N
 = O (N log N)

30

Algorithm 4

int MaxSubSum4 (int A[], int N)

{

int thissum, maxsum, j;

1. thissum = maxsum = 0;

2. for (j=0; j<N; j++) {

3. thissum += A[j];

4. if (thissum > maxsum)

5. maxsum = thissum;

6. else if (thissum < 0)

7. thissum = 0;

}

8. return maxsum;

}

Complexity :
O(N)

Thank You!

	Slide 1
	Algorithm Analysis
	What is an algorithm ?
	Analysis of Algorithms
	What do we use for a yardstick?
	Sorting integers
	PowerPoint Presentation
	Contd.
	Complexity classes
	Introducing the language of O-notation
	Mathematical background
	Slide 12
	Examples
	Concepts in Analysis
	Model of computation
	Running time of algorithms
	Maximum size solvable within 1 hour
	Observations
	Maximum subsequence sum problem
	Algorithm 1
	Slide 21
	Improve the running time
	Algorithm 2
	Recursive algorithm
	Divide & Conquer
	Slide 26
	Algorithm 3
	Algorithm 3 : continued
	Complexity
	Algorithm 4
	Slide 31

