
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

File Handling

3

Writing to a file: fprintf()
 fprintf() works exactly like printf(), except that

its first argument is a file pointer. The
remaining two arguments are the same as
printf

 The behaviour is exactly the same, except that
the writing is done on the file instead of the
display

FILE *fptr;
fptr = fopen ("file.dat","w");
fprintf (fptr, "Hello World!\n");
fprintf (fptr, “%d %d”, a, b);

4

Reading from a file: fscanf()

 fscanf() works like scanf(), except that its first
argument is a file pointer. The remaining two
arguments are the same as scanf

 The behaviour is exactly the same, except
 The reading is done from the file instead of from

the keyboard (think as if you typed the same thing
in the file as you would in the keyboard for a scanf
with the same arguments)

 The end-of-file for a text file is checked differently
(check against special character EOF)

5

Reading from a file: fscanf()

FILE *fptr;

fptr = fopen (“input.dat”, “r”);

/* Check it's open */

if (fptr == NULL)

 {

 printf(“Error in opening file \n”);

 exit(-1);

 }

fscanf (fptr, “%d %d”,&x, &y);

char ch;

while (fscanf(fptr, “%c”,
&ch) != EOF)

{

 /* not end of file; read */

}

EOF checking in a loop

6

Reading lines from a file: fgets()

 Takes three parameters
 a character array str, maximum number of characters

to read size, and a file pointer fp
 Reads from the file fp into the array str until any

one of these happens
 No. of characters read = size - 1
 \n is read (the char \n is added to str)
 EOF is reached or an error occurs

 ‘\0’ added at end of str if no error
 Returns NULL on error or EOF, otherwise returns

pointer to str

7

Reading lines from a file: fgets()

FILE *fptr;
char line[1000];
/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL)
{
 printf ("Read line %s\n",line);
}

8

Writing lines to a file: fputs()

 Takes two parameters
A string str (null terminated) and a file pointer

fp
 Writes the string pointed to by str into the

file
 Returns non-negative integer on success,

EOF on error

9

Reading/Writing a character:
fgetc(), fputc()
 Equivalent of getchar(), putchar() for reading/writing

char from/to keyboard
 Exactly same, except that the first parameter is a file

pointer
 Equivalent to reading/writing a byte (the char)
 int fgetc(FILE *fp);
 int fputc(int c, FILE *fp);
 Example:

 char c;
 c = fgetc(fp1); fputc(c, fp2);

10

Formatted and Un-formatted I/O

 Formatted I/O
 Using fprintf/fscanf
 Can specify format strings to directly read as

integers, float etc.

 Unformatted I/O
 Using fgets/fputs/fgetc/fputc
 No format string to read different data types
 Need to read as characters and convert explicitly

11

Closing a file

 Should close a file when no more read/write
to a file is needed in the rest of the program

 File is closed using fclose() and the file
pointer

FILE *fptr;
char filename[]= "myfile.dat";
fptr = fopen (filename,"w");
fprintf (fptr,"Hello World of filing!\n");
…. Any more read/write to myfile.dat….
fclose (fptr);

Thank You!

	Slide 1
	File Handling
	Writing to a file: fprintf()
	Reading from a file: fscanf()
	Slide 5
	Reading lines from a file: fgets()
	Slide 7
	Writing lines to a file: fputs()
	Reading/Writing a character: fgetc(), fputc()
	Formatted and Un-formatted I/O
	Closing a file
	Slide 12

