
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

File Handling

3

Writing to a file: fprintf()
 fprintf() works exactly like printf(), except that

its first argument is a file pointer. The
remaining two arguments are the same as
printf

 The behaviour is exactly the same, except that
the writing is done on the file instead of the
display

FILE *fptr;
fptr = fopen ("file.dat","w");
fprintf (fptr, "Hello World!\n");
fprintf (fptr, “%d %d”, a, b);

4

Reading from a file: fscanf()

 fscanf() works like scanf(), except that its first
argument is a file pointer. The remaining two
arguments are the same as scanf

 The behaviour is exactly the same, except
 The reading is done from the file instead of from

the keyboard (think as if you typed the same thing
in the file as you would in the keyboard for a scanf
with the same arguments)

 The end-of-file for a text file is checked differently
(check against special character EOF)

5

Reading from a file: fscanf()

FILE *fptr;

fptr = fopen (“input.dat”, “r”);

/* Check it's open */

if (fptr == NULL)

 {

 printf(“Error in opening file \n”);

 exit(-1);

 }

fscanf (fptr, “%d %d”,&x, &y);

char ch;

while (fscanf(fptr, “%c”,
&ch) != EOF)

{

 /* not end of file; read */

}

EOF checking in a loop

6

Reading lines from a file: fgets()

 Takes three parameters
 a character array str, maximum number of characters

to read size, and a file pointer fp
 Reads from the file fp into the array str until any

one of these happens
 No. of characters read = size - 1
 \n is read (the char \n is added to str)
 EOF is reached or an error occurs

 ‘\0’ added at end of str if no error
 Returns NULL on error or EOF, otherwise returns

pointer to str

7

Reading lines from a file: fgets()

FILE *fptr;
char line[1000];
/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL)
{
 printf ("Read line %s\n",line);
}

8

Writing lines to a file: fputs()

 Takes two parameters
A string str (null terminated) and a file pointer

fp
 Writes the string pointed to by str into the

file
 Returns non-negative integer on success,

EOF on error

9

Reading/Writing a character:
fgetc(), fputc()
 Equivalent of getchar(), putchar() for reading/writing

char from/to keyboard
 Exactly same, except that the first parameter is a file

pointer
 Equivalent to reading/writing a byte (the char)
 int fgetc(FILE *fp);
 int fputc(int c, FILE *fp);
 Example:

 char c;
 c = fgetc(fp1); fputc(c, fp2);

10

Formatted and Un-formatted I/O

 Formatted I/O
 Using fprintf/fscanf
 Can specify format strings to directly read as

integers, float etc.

 Unformatted I/O
 Using fgets/fputs/fgetc/fputc
 No format string to read different data types
 Need to read as characters and convert explicitly

11

Closing a file

 Should close a file when no more read/write
to a file is needed in the rest of the program

 File is closed using fclose() and the file
pointer

FILE *fptr;
char filename[]= "myfile.dat";
fptr = fopen (filename,"w");
fprintf (fptr,"Hello World of filing!\n");
…. Any more read/write to myfile.dat….
fclose (fptr);

Thank You!

	Slide 1
	File Handling
	Writing to a file: fprintf()
	Reading from a file: fscanf()
	Slide 5
	Reading lines from a file: fgets()
	Slide 7
	Writing lines to a file: fputs()
	Reading/Writing a character: fgetc(), fputc()
	Formatted and Un-formatted I/O
	Closing a file
	Slide 12

