
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

Strings

3

Strings
• 1-d arrays of type char
• By convention, a string in C is terminated by the

end-of-string sentinel ‘\0’ (null character)
• char s[21] - can have variable length string

delimited with \0
• Max length of the string that can be stored is 20 as

the size must include storage needed for the ‘\0’

• String constants : “hello”, “abc”
• “abc” is a character array of size 4

4

String Constant

• A string constant is treated as a pointer
• Its value is the base address of the string

char *p = “abc”;

printf (“%s %s\n”,p,p+1); /* abc bc is printed */

a b c
\
0

p

5

Differences : array & pointers

char *p = “abcde”;
The compiler allocates

space for p, puts the
string constant “abcde”
in memory somewhere
else, initializes p with
the base address of
the string constant

char s[] = “abcde”;

≡ char s[] = {‘a’,’b’,’c’,’d’,’e’.’\0’};

The compiler allocates 6 bytes
of memory for the array s
which are initialized with the
6 characters

a b c d e
\
0

a b c d e
\
0

p
S

6

Library Functions for String
Handling
■You can write your own C code to do different

operations on strings like finding the length of a
string, copying one string to another, appending
one string to the end of another etc.

■C library provides standard functions for these
that you can call, so no need to write your own
code

■To use them, you must do
 #include <string.h>

At the beginning of your program (after #include
<stdio.h>)

7

String functions we will see

■strlen : finds the length of a string
■strcat : concatenates one string at the end

of another
■strcmp : compares two strings

lexicographically
■strcpy : copies one string to another

8

strlen()

int strlen(const char *s)
■Takes a null-terminated

string (we routinely refer to
the char pointer that points
to a null-terminated char
array as a string)

■Returns the length of
the string, not counting
the null (\0) character

int strlen (const char *s) {
 int n;
 for (n=0; *s!=‘\0’; ++s)

++n;
 return n;
}

You cannot change contents

 of s in the function

9

strcat()

■char *strcat (char *s1,
const char *s2);

■Takes 2 strings as
arguments,
concatenates them,
and puts the result in
s1. Returns s1.
Programmer must
ensure that s1 points
to enough space to
hold the result.

char *strcat(char *s1, const char
*s2)
{
 char *p = s1;
 while (*p != ‘\0’) /* go to end */

++p;
 while(*s2 != ‘\0’)
 *p++ = *s2++; /* copy */
 *p = ‘\0’;
 return s1;
}

You cannot change contents

 of s2 in the function

10

Dissection of the strcat() function

char *p = s1;

p is being initialized, not *p. The pointer p is initialized
to the pointer value s1. Thus p and s1 point to the
same memory location

11

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

12

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

13

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

*p = ‘\0’; put the ‘\0’ at the end of the string

14

strcmp()
int strcmp (const char

*s1, const char *s2);

Two strings are passed
as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

15

strcmp()
int strcmp (const char

*s1, const char *s2);

Two strings are passed
as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

int strcmp(const char *s1, const char
*s2)
{
 for (;*s1!=‘\0’&&*s2!=‘\0’; s1++,s2++)
 {

if (*s1>*s2) return 1;
if (*s2>*s1) return -1;

 }
 if (*s1 != ‘\0’) return 1;
 if (*s2 != ‘\0’) return -1;
 return 0;
}

16

char *strcpy (char *s1, const char *s2);

The characters in the string s2 are copied into s1 until
‘\0’ is moved. Whatever exists in s1 is overwritten. It
is assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

strcpy()

17

char *strcpy (char *s1, const char *s2);

The characters in the string s2 are copied into s1 until
‘\0’ is moved. Whatever exists in s1 is overwritten. It
is assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

char * strcpy (char *s1, const char *s2)
{
 char *p = s1;
 while (*p++ = *s2++) ;
 return s1;
}

strcpy()

18

Example: Using string functions

 25

 9

 -1

 big sky country

 beautiful brown cows!

int main()
 {
 char s1[] = "beautiful big sky
country",
 s2[] = "how now brown cow";
 printf("%d\n",strlen (s1));
 printf("%d\n",strlen (s2+8));
 printf("%d\n", strcmp(s1,s2));
 printf("%s\n",s1+10);
 strcpy(s1+10,s2+8);
 strcat(s1,"s!");
 printf("%s\n", s1);
 return 0;
 }

Output

	Slide 1
	Slide 2
	Strings
	String Constant
	Differences : array & pointers
	Library Functions for String Handling
	String functions we will see
	strlen()
	strcat()
	Dissection of the strcat() function
	Dissection of the strcat() function
	Dissection of the strcat() function
	Dissection of the strcat() function
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Example: Using string functions

