
CS10003:

Programming & Data Structures

Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Autumn 2020

Pointers in

Function

Passing Pointers to a Function

Pointers are often passed to a function as arguments

Allows data items within the calling function to be accessed

by the called function, altered, and then returned to the

calling function in altered form

Useful for returning more than one value from a function

Still call-by-value, but now the address is copied, not the

content

Passing Pointers to a Function

Pointers are often passed to a function as arguments.

Allows data items within the calling program to be accessed

by the function, altered, and then returned to the calling

program in altered form.

Called call-by-reference (or by address or by location).

Normally, arguments are passed to a function by value.

The data items are copied to the function.

Changes are not reflected in the calling program.

5

Example: Swapping

void swap (int x, int y)

{

 int t;

 t = x;

 x = y;

 y = t;

}

int main()

{

 int a, b;

 a = 5; b = 20;

 swap (a, b);

 printf (“\n a=%d, b=%d”, a, b);

 return 0;

}

a=5, b=20

Output

Parameters

passed by

value, so

changes done

on copy, not

returned to

calling function

Example: Swapping using pointers

void swap (int *x, int *y)

{

 int t;

 t = *x;

 *x = *y;

 *y = t;

}

int main()

{

 int a, b;

 a = 5; b = 20;

 swap (&a, &b);

 printf (“\n a=%d, b=%d”, a, b);

 return 0;

}

a=20, b=5

Output

Parameters

passed by

address,

changes done

on the value

stored at that

address

While passing a parameter to a function, when should

you pass its address instead of the value?

Pass address if both these conditions are satisfied

The parameter value will be modified inside the function

body

The modified value is needed in the calling function after

the called function returns

Consider the swap function to see this

Homework

Sort three numbers using swap function.

Pointers and Arrays

When an array is declared,

The compiler allocates a base address and sufficient amount

of storage to contain all the elements of the array in

contiguous memory locations.

The base address is the location of the first element (index 0)

of the array.

The compiler also defines the array name as a constant

pointer to the first element.

Passing Arrays as Pointers

float average (int a, float x[])
{
 :
 sum = sum + x[i];
}

int main()
{
 int n;
 float list[100], avg;
 :
 avg = average (n, list);
 :
}

float average (int a, float *x)
{
 :
 sum = sum + x[i];
}

int main()
{
 int n;
 float list[100], avg;
 :
 avg = average (n, list);
 :
}

Both the forms below are fine in the function body, as arrays are

passed by passing the address of the first element. Calling

function calls it the same way

Example: function to find average

int main()

{

 int x[100], k, n;

 scanf (“%d”, &n);

 for (k=0; k<n; k++)

 scanf (“%d”, &x[k]);

 printf (“\nAverage is %f”,avg(x,n));

 return 0;

}

float avg (int array[], int size)

{

 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)

 sum = sum + *(p+i);

 return ((float) sum / size);

}

int main()

{

 int x[100], k, n;

 scanf (“%d”, &n);

 for (k=0; k<n; k++)

 scanf (“%d”, &x[k]);

 printf (“\nAverage is %f”,avg(x,n));

 return 0;

}

float avg (int array[], int size)

{

 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)

 sum = sum + p[i];

 return ((float) sum / size);

}

Arrays and pointers

An array name is an address, or a pointer value.

Pointers as well as arrays can be subscripted.

A pointer variable can take different addresses as values.

An array name is an address, or pointer, that is fixed.

It is a CONSTANT pointer to the first element.

Arrays
Consequences:

ar is a pointer

ar[0] is the same as *ar

ar[2] is the same as *(ar+2)

We can use pointer arithmetic to access arrays more

conveniently.

Declared arrays are only allocated while the scope is valid

 char *foo() {

 char string[32]; ...;

 return string;

} is incorrect

Arrays

Array size n; want to access from 0 to n-1, so you

should use counter AND utilize a constant for

declaration & incr

Wrong

int i,n=10;

 int ar[n];

for(i = 0; i < n; i++){ ... }

Right

#define ARRAY_SIZE 10

int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }

Why? Single Source of Truth

Arrays in Functions

An array parameter can be declared as an array or a

pointer; an array argument can be passed as a pointer.

Can be incremented

int strlen(char s[])

{

}

int strlen(char *s)

{

}

Arrays and pointers

int a[20], i, *p;

The expression a[i] is equivalent to *(a+i)

p[i] is equivalent to *(p+i)

When an array is declared the compiler allocates a sufficient

amount of contiguous space in memory. The base address of

the array is the address of a[0].

Suppose the system assigns 300 as the base address of a. a[0],

a[1], ...,a[19] are allocated 300, 304, ..., 376.

Arrays and pointers

#define N 20

int a[N], i, *p, sum;

p = a; is equivalent to p = &a[0];

p is assigned 300.

Pointer arithmetic provides an alternative to array indexing.

p=a+1; is equivalent to p=&a[1]; (p is assigned 304)

for (p=a; p<&a[N]; ++p)

sum += *p ;

p=a;

for (i=0; i<N; ++i)

sum += p[i] ;
for (i=0; i<N; ++i)

sum += *(a+i) ;

Returning multiple values from a function

Return statement can return only one value

What if we want to return more than one value?

Use pointers

Return one value as usual with a return statement

For other return values, pass the address of a variable in

which the value is to be returned

Example: Returning max and min of an array

Both returned through pointers (could have returned one of them
through return value of the function also)

int main()

{

 int n, min, max, i, A[100];

 scanf(“%d”, &n);

 for (i=0; i<n; ++i)

 scanf(“%d”, &A[i]);

 MinMax(A, n, &min, &max);

 printf(“Min and max are %d, %d”, min, max);

 return 0;

}

void MinMax(int A[], int n, int *min,

int *max)

{

 int i, x, y;

 x = y = A[0];

 for (i=1; i<n; ++i) {

 if (A[i] < x) x = A[i];

 if (A[i] > y) y = A[i];

 }

 *min = x; *max = y;

}

Structures and Functions

A structure can be passed as argument to a

function.

A function can also return a structure.

The process shall be illustrated with the help of

an example.

A function to add two complex numbers.

Example: Passing structure pointers

struct cplx {

 float re;

 float im;

};

int main()

{

 struct cplx a, b, c;

 scanf(“%f%f”, &a.re, &a.im);

 scanf(“%f%f”, &b.re, &b.im);

 add(&a, &b, &c) ;

 printf(“\n %f %f”, c.re, c.im);

 return 0;

}

void add(struct cplx *x, struct cplx *y, struct cplx *t)

{

 t->re = x->re + y->re;

 t->im = x->im + y->im;

}

Remember: The Actual Mechanism

When an array is passed to a function, the values of
the array elements are not passed to the function.

The array name is interpreted as the address of the first array
element.

The formal argument therefore becomes a pointer to the first
array element.

When an array element is accessed inside the function, the
address is calculated using the formula stated before.

Changes made inside the function are thus also reflected in the
calling program.

Typecasting

Typecasting is mostly not required in a well

written C program. However, you can do this

as follows:

char c = ‘5’

char *d = &c;

int *e = (int*)d;

Remember (sizeof(char) != sizeof(int))

Typecasting

void pointers

Pointers defined to be of specific data type cannot hold

the address of another type of variable.

It gives syntax error on compilation. Else use a void

pointer (which is a general purpose pointer type), which

can point to variables of any data type.

But while dereferencing, we need an explicit type cast.

Example

#include<stdio.h>

int main()

{

 float pi=3.14128;

 int num=100;

 void *p;

 p=π

printf(“First p points to a float variable and access pi=%.5f\n", *((float *)p));

 p=#

printf("Then p points to an integer variable and access num=%d\n",*((int *)p));

 return 0;

}

Output

First p points to a float variable and access pi=3.14128

Then p points to an integer variable and access num=100

Pointers to Pointers

Pointer is a type of data in C
hence we can also have pointers to pointers

Pointers to pointers offer flexibility in handling arrays,
passing pointer variables to functions, etc.

General format:
<data_type> **<ptr_to_ptr>;

 <ptr_to_ptr> is a pointer to a pointer pointing to a data object of
the type <data_type>

This feature is often made use of while passing two or
more dimensional arrays to and from different
functions.

Example #include<stdio.h>

int main() {

 int *iptr;

 int **ptriptr;

 int data;

 iptr=&data;

 ptriptr=&iptr;

 *iptr=100;

 printf("variable 'data' contains %d\n",data);

 **ptriptr=200;

 printf("variable 'data' contains %d\n",data);

 data=300;

 printf("variable 'data' contains %d\n",**ptriptr);

 return 0;

}

Output

variable 'data' contains 100

variable 'data' contains 200

variable 'data' contains 300

scanf Revisited

 int x, y ;

 printf (“%d %d %d”, x, y, x+y) ;

What about scanf ?

 scanf (“%d %d %d”, x, y, x+y);

 scanf (“%d %d”, &x, &y);

NO

YES

Thank You!

