
CS10003:

Programming & Data Structures

Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Autumn 2020

Array Pointers

Pointer Expressions

Like other variables, pointer variables can
appear in expressions

What are allowed in C?

Add an integer to a pointer

Subtract an integer from a pointer

Subtract one pointer from another (related)

If p1 and p2 are both pointers to the same array, then

p2 – p1 gives the number of elements between p1

and p2

Pointer Expressions

What are not allowed?

Adding two pointers.

 p1 = p1 + p2;

Multiply / divide a pointer in an expression

 p1 = p2 / 5;

 p1 = p1 – p2 * 10;

Scale Factor

We have seen that an integer value can be
added to or subtracted from a pointer variable

int *p1, *p2;
int i, j;
 :
p1 = p1 + 1;
p2 = p1 + j;
p2++;
p2 = p2 – (i + j);

In reality, it is not the integer value which is

added/subtracted, but rather the scale factor times
the value

Scale Factor

 Data Type Scale Factor

 char 1

 int 4

 float 4

 double 8

If p1 is an integer pointer, then

 p1++

 will increment the value of p1 by 4

Scale Factor

The scale factor indicates the number of bytes used to
store a value of that type

So the address of the next element of that type can only be at
the (current pointer value + size of data)

The exact scale factor may vary from one machine to
another

Can be found out using the sizeof

 Gives the size of that data type

Syntax:

 sizeof (data_type)

Pointer arithmetic and element size

double * p, *q ;

The expression p+1 yields the correct machine address

for the next variable of that type.

Other valid pointer expressions:

p+i

++p

p+=i

p-q /* Num of array elements between p and q */

Pointer Arithmetic

Since a pointer is just a mem address, we can add to it to

traverse an array.

p+1 returns a ptr to the next array element.

(*p)+1 vs *p++ vs *(p+1) vs *(p)++ ?

 x = *p++ x = *p ; p = p + 1;

 x = (*p)++ x = *p ; *p = *p + 1;

What if we have an array of large structs (objects)?

C takes care of it: In reality, p+1 doesn’t add 1 to the memory

address, it adds the size of the array element.

 Pointer Arithmetic

We can use pointer arithmetic to “walk” through memory:

° C automatically adjusts the pointer by the right amount each time

(i.e., 1 byte for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {

 int i;

 for (i=0; i<n; i++) {

 *to++ = *from++;

 }

}

int get(int array[], int n)

{

 return (array[n]);

 /* OR */

 return *(array + n);

}

Pointer Arithmetic

C knows the size of the thing a pointer points to – every addition or

subtraction moves that many bytes.

So the following are equivalent:

Pointer Arithmetic

Array size n; want to access from 0 to n-1

test for exit by comparing to address one element past the

array

 int ar[10], *p, *q, sum = 0;

...

p = ar; q = &(ar[10]);

while (p != q)

 /* sum = sum + *p; p = p + 1; */

 sum += *p++;

Is this legal?

C defines that one element past end of array must be a valid

address, i.e., not cause an bus error or address error

Example int main()

{

 printf (“No. of bytes in int is %u \n”, sizeof(int));

 printf (“No. of bytes in float is %u \n”, sizeof(float));

 printf (“No. of bytes in double is %u \n”, sizeof(double));

 printf (“No. of bytes in char is %u \n”, sizeof(char));

 printf (“No. of bytes in int * is %u \n”, sizeof(int *));

 printf (“No. of bytes in float * is %u \n”, sizeof(float *));

 printf (“No. of bytes in double * is %u \n”, sizeof(double *));

 printf (“No. of bytes in char * is %u \n”, sizeof(char *));

 return 0;

}

No. of bytes in int is 4

No. of bytes in float is 4

No. of bytes in double is 8

No. of bytes in char is 1

No. of bytes in int * is 4

No. of bytes in float * is 4

No. of bytes in double * is 4

No. of bytes in char * is 4

Output on a PC

Note that pointer takes 4 bytes to store, independent
of the type it points to

However, this can vary between machines
Output of the same program on a server

Always use sizeof() to get the correct size`

Should also print pointers using %p (instead of %u
as we have used so far for easy comparison)

No. of bytes in int is 4

No. of bytes in float is 4

No. of bytes in double is 8

No. of bytes in char is 1

No. of bytes in int * is 8

No. of bytes in float * is 8

No. of bytes in double * is 8

No. of bytes in char * is 8

15

Example
int main()

{

 int A[5], i;

 printf(“The addresses of the array elements are:\n”);

 for (i=0; i<5; i++)

 printf(“&A[%d]: Using \%p = %p, Using \%u = %u”, i, &A[i], &A[i]);

 return 0;

}

&A[0]: Using %p = 0x7fffb2ad5930, Using %u = 2997705008

&A[1]: Using %p = 0x7fffb2ad5934, Using %u = 2997705012

&A[2]: Using %p = 0x7fffb2ad5938, Using %u = 2997705016

&A[3]: Using %p = 0x7fffb2ad593c, Using %u = 2997705020

&A[4]: Using %p = 0x7fffb2ad5940, Using %u = 2997705024

Output on a server machine

0x7fffb2ad5930 = 140736191093040 in decimal (NOT 2997705008)

so print with %u prints a wrong value (4 bytes of unsigned int cannot

hold 8 bytes for the pointer value)

Pointers and Arrays

When an array is declared,

The compiler allocates sufficient amount of storage

to contain all the elements of the array in

contiguous memory locations

The base address is the location of the first element

(index 0) of the array

The compiler also defines the array name as a

constant pointer to the first element

Example

Consider the declaration:

 int x[5] = {1, 2, 3, 4, 5};

Suppose that each integer requires 4 bytes

Compiler allocates a contiguous storage of size 5x4 = 20

bytes

Suppose the starting address of that storage is 2500

 Element Value Address

 x[0] 1 2500

 x[1] 2 2504

 x[2] 3 2508

 x[3] 4 2512

 x[4] 5 2516

Example

The array name x is the starting address of the

array
 Both x and &x[0] have the value 2500

 x is a constant pointer, so cannot be changed

X = 3400, x++, x += 2 are all illegal

If int *p is declared, then

 p = x; and p = &x[0]; are equivalent

We can access successive values of x by using

p++ or p-- to move from one element to another

Relationship between p and x:

p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

C knows the type of each element in array x, so

knows how many bytes to move the pointer to

get to the next element

In general, *(p+i) gives

the value of x[i]

Important !!

 Pitfall: An array in C does not know its own length, & bounds

not checked!

 Consequence: While traversing the elements of an array (either

using [] or pointer arithmetic), we can accidentally access off the

end of an array (access more elements than what is there in the

array)

 Consequence: We must pass the array and its size to a function

which is going to traverse it, or there should be some way of

knowing the end based on the values (Ex., a –ve value ending a

string of +ve values)

 Accessing arrays out of bound can cause segmentation faults

 Hard to debug (already seen in lab)

Always be careful when traversing arrays in programs

Example

Pointers can be defined for any type, including
user defined types

Example

 struct name {

 char first[20];
 char last[20];
};
struct name *p;

p is a pointer which can store the address of a struct
name type variable

Pointers to Structures

Pointer variables can be defined to store the address of
structure variables

Example:

struct student {

 int roll;

 char dept_code[25];

 float cgpa;

 };

struct student *p;

Just like other pointers, p does not point to anything by

itself after declaration

Need to assign the address of a structure to p

Can use & operator on a struct student type variable

Example:

struct student x, *p;

scanf(“%d%s%f”, &x.roll, x.dept_code, &x.cgpa);

p = &x;

Once p points to a structure variable, the members can

be accessed in one of two ways:

(*p).roll, (*p).dept_code, (*p).cgpa

Note the () around *p

p –> roll, p –> dept_code, p –> cgpa

The symbol –> is called the arrow operator

Example:
printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, (*p).roll,

(*p).dept_code, (*p).cgpa);

printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, p->roll,

 p->dept_code, p->cgpa);

Pointers and Array of Structures

Recall that the name of an array is the address of its 0-th element

Also true for the names of arrays of structure variables.

Consider the declaration:

struct student class[100], *ptr ;

The name class represents the address of the 0-th element of

the structure array

ptr is a pointer to data objects of the type struct student

The assignment

ptr = class;

 will assign the address of class[0] to ptr

Now ptr->roll is the same as class[0].roll. Same for other

members

When the pointer ptr is incremented by one (ptr++) :

The value of ptr is actually increased by sizeof(struct student)

It is made to point to the next record

Note that sizeof operator can be applied on any data type

A Warning

When using structure pointers, be careful of operator

precedence

Member operator “.” has higher precedence than “*”

 ptr –> roll and (*ptr).roll mean the same thing

 *ptr.roll will lead to error

The operator “–>” enjoys the highest priority among operators

 ++ptr –> roll will increment ptr->roll, not ptr

 (++ptr) –> roll will access (ptr + 1)->roll (for example, if you

want to print the roll no. of all elements of the class array)

Arrays within Structures

C allows the use of arrays as structure members.

Example:

struct stud {

 int roll;

 char dept_code[25];

 int marks[6];

 float cgpa;

 };

struct stud class[100];

To access individual marks of students:

class[35].marks[4]

class[i].marks[j]

Thank You!

