
CS10003:

Programming & Data Structures

Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Autumn 2020

Pointer Basics

What is a pointer?
First of all, it is a variable, just like other variables you

studied

So it has type, storage etc.

Difference: it can only store the address (rather than

the value) of a data item

Type of a pointer variable – pointer to the type of the

data whose address it will store

Example: int pointer, float pointer,…

Can be pointer to any user-defined types also like structure

types

What is a pointer?

They have a number of useful applications

Enables us to access a variable that is defined outside the

function

Can be used to pass information back and forth between a

function and its reference point

More efficient in handling data tables

Reduces the length and complexity of a program

Sometimes also increases the execution speed

Basic Concept

As seen before, in memory, every stored data item

occupies one or more contiguous memory cells

The number of memory cells required to store a data

item depends on its type (char, int, double, etc.).

Whenever we declare a variable, the system allocates

memory location(s) to hold the value of the variable.

Since every byte in memory has a unique address,

this location will also have its own (unique)

address.

Basic Concept

Consider the statement

 int xyz = 50;

This statement instructs the compiler to allocate a

location for the integer variable xyz, and put the

value 50 in that location

Suppose that the address location chosen is 1380

xyz variable

50 value

1380 address

Basic Concept

During execution of the program, the system always
associates the name xyz with the address 1380

The value 50 can be accessed by using either the
name xyz or the address 1380

Since memory addresses are simply numbers, they can
be assigned to some variables which can be stored in
memory

Such variables that hold memory addresses are
called pointers

Since a pointer is a variable, its value is also stored in
some memory location

Basic Concept

Suppose we assign the address of xyz to a

variable p

p is said to point to the variable xyz

Variable Value Address

 xyz 50 1380

 p 1380 2545

p = &xyz;

Address vs. Value

 Each memory cell has an address associated

with it

11 12 13 14 15 ...

Address vs. Value

 Each memory cell has an address associated

with it

 Each cell also stores some value

23 42
11 12 13 14 15 ...

Address vs. Value

 Each memory cell has an address associated

with it

 Each cell also stores some value

 Don’t confuse the address referring to a

memory location with the value stored in that

location

23 42
11 12 13 14 15 ...

Values vs Locations

Variables name memory locations, which hold

values

32

x

1024:

address
name

value

Pointers
A pointer is just a C variable whose value can contain the

address of another variable

Needs to be declared before use just like any other variable

General form:

 data_type *pointer_name;

Three things are specified in the above declaration:

The asterisk (*) tells that the variable pointer_name
is a pointer variable

 pointer_name needs a memory location
 pointer_name points to a variable of type data_type

Example

 int *count;

 float *speed;

 char *c;

Once a pointer variable has been declared, it can be made to

point to a variable using an assignment statement like

 int *p, xyz;

 :

 p = &xyz;

This is called pointer initialization

Accessing the Address of a Variable

The address of a variable is given by the & operator

The operator & immediately preceding a variable returns

the address of the variable

Example:

 p = &xyz;

The address of xyz (1380) is assigned to p

The & operator can be used only with a simple variable (of

any type, including user-defined types) or an array

element

 &distance

 &x[0]

 &x[i-2]

Illegal Use of &

 &235
Pointing at constant

int arr[20];
 :
 &arr;

Pointing at array name

&(a+b)
Pointing at expression

In all these cases, there is no storage,

so no address either

Example

#include <stdio.h>

int main()

{

 int a;

 float b, c;

 double d;

 char ch;

 a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;

 printf (“%d is stored in location %u \n”, a, &a) ;

 printf (“%f is stored in location %u \n”, b, &b) ;

 printf (“%f is stored in location %u \n”, c, &c) ;

 printf (“%lf is stored in location %u \n”, d, &d) ;

 printf (“%c is stored in location %u \n”, ch, &ch) ;

 return 0;

}

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

Output

 int a, b;

int *p;

p = &a;

b = *p;

Accessing a variable through its Pointer

Once a pointer has been assigned the address of

a variable, the value of the variable can be

accessed using the indirection operator (*).

 Equivalent to b = a;

Example

#include <stdio.h>

int main()

{

 int a, b;

 int c = 5;

 int *p;

 a = 4 * (c + 5) ;

 p = &c;

 b = 4 * (*p + 5) ;

 printf (“a=%d b=%d \n”, a, b);

 return 0;

}

Equivalent

a=40 b=40

Example

int main()

{

 int x, y;

 int *ptr;

 x = 10 ;

 ptr = &x ;

 y = *ptr ;

 printf (“%d is stored in location %u \n”,x,&x);

 printf (“%d is stored in location %u \n”,*&x,&x);

 printf (“%d is stored in location %u \n”,*ptr,ptr);

 printf (“%d is stored in location %u \n”,y,&*ptr);

 printf (“%u is stored in location %u \n”,ptr,&ptr);

 printf (“%d is stored in location %u \n”,y,&y);

 *ptr = 25;

 printf (“\nNow x = %d \n”, x);

 return 0;

}

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

3221224908 is stored in location 3221224900

10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Suppose that

Then output is

Example

32

x

1024:

int x;

int xp ;

1024

xp

xp = &x ;

address of x

pointer to int

xp = 0; /* Assign 0 to x */

xp = xp + 1; /* Add 1 to x */

Value of the pointer

Declaring a pointer just allocates space to hold the pointer –
it does not allocate something to be pointed to!

Local variables in C are not initialized, they may contain anything

After declaring a pointer:

 int *ptr;

 ptr doesn’t actually point to anything yet. We can either:
make it point to something that already exists, or
allocate room in memory for something new that it will

point to… (dynamic allocation, to be done later)

Example

Memory and Pointers:

0

1500

2300

Memory and Pointers:

int *p, v;

arbitrary value

0

arbitrary value 2300 p:

v: 1500

Example

Memory and Pointers:

int v, *p;

p = &v;

arbitrary value

0

1500

1500 2300 p:

v:

Example

Memory and Pointers:

int v, *p;

p = &v;

v = 17;

17

0

1500

1500 2300 p:

v:

Example

Memory and Pointers:

int v, *p;

p = &v;

v = 17;

*p = *p + 4;

v = *p + 4;

25

0

1500

1500 2300 p:

v:

Example

More examples of using Pointers in Expressions

If p1 and p2 are two pointers, the following
statements are valid:

 sum = *p1 + *p2;
 prod = *p1 * *p2;
 prod = (*p1) * (*p2);
 *p1 = *p1 + 2;
 x = *p1 / *p2 + 5;

Note that this unary * has higher precedence than
all arithmetic/relational/logical operators

*p1 can appear on

the left hand side

Things to Remember

Pointer variables must always point to a data item of the

same type
 float x;

 int *p;

 :

 p = &x;

will result in wrong output

Never assign an absolute address to a pointer variable

 int *count;

 count = 1268;

Thank You!

