
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

Structures

What is a Structure?

n Used for handling a group of logically related data items
¨ Examples:

n Student name, roll number, and marks
n Real part and complex part of a complex number

n Helps in organizing complex data in a more meaningful way
n The individual structure elements are called members

Defining a Structure
struct tag {

member 1;
member 2;
:
member m;

};

¨ struct is the required C keyword
¨ tag is the name of the structure
¨ member 1, member 2, … are individual member

declarations

Contd.

n The individual members can be ordinary variables,
pointers, arrays, or other structures (any data type)
¨ The member names within a particular structure must

be distinct from one another
¨ A member name can be the same as the name of a

variable defined outside of the structure
n Once a structure has been defined, the individual

structure-type variables can be declared as:
struct tag var_1, var_2, …, var_n;

Example
n A structure definition

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

};

n Defining structure variables:

struct student a1, a2, a3;

A new data-type

A Compact Form
n It is possible to combine the declaration of the structure

with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

} var_1, var_2,…, var_n;

n Declares three variables of type struct tag
n In this form, tag is optional

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

} a1, a2, a3;

struct {
char name[30];
int roll_number;
int total_marks;
char dob[10];

} a1, a2, a3;

Equivalent Declarations

Accessing a Structure

n The members of a structure are processed individually, as
separate entities
¨ Each member is a separate variable

n A structure member can be accessed by writing
variable.member

where variable refers to the name of a structure-type variable, and
member refers to the name of a member within the structure

n Examples:
a1.name, a2.name, a1.roll_number, a3.dob

Example: Complex number addition
void main()
{

struct complex
{

float real;
float cmplex;

} a, b, c;

scanf (“%f %f”, &a.real, &a.cmplex);
scanf (“%f %f”, &b.real, &b.cmplex);

c.real = a.real + b.real;
c.cmplex = a.cmplex + b.cmplex;
printf (“\n %f + %f j”, c.real, c.cmplex);

}

Operations on Structure Variables
n Unlike arrays, a structure variable can be directly assigned

to another structure variable of the same type
a1 = a2;

n All the individual members get assigned
n Two structure variables can not be compared for equality

or inequality
if (a1 == a2)…… this cannot be done

12

Arrays of Structures
n Once a structure has been defined, we can declare an

array of structures
struct student class[50];

¨ The individual members can be accessed as:
class[i].name

class[5].roll_number

type name

13

Arrays within Structures
n A structure member can be an array

n The array element within the structure can be
accessed as:

a1.marks[2], a1.dob[3],…

struct student
{

char name[30];
int roll_number;
int marks[5];
char dob[10];

} a1, a2, a3;

Structure Initialization

n Structure variables may be initialized following similar
rules of an array. The values are provided within the
second braces separated by commas

n An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.imag=2.0;
b.real=-3.0; b.imag=4.0;

Parameter Passing in a Function
n Structure variables can be passed as parameters like any other

variables. Only the values will be copied during function
invocation

void swap (struct complex a, struct complex b)
{

struct complex tmp;

tmp=a;
a=b;
b=tmp;

}

Returning structures

n It is also possible to return structure values from a function. The
return data type of the function should be as same as the data
type of the structure itself

struct complex add(struct complex a, struct complex b)
{

struct complex tmp;

tmp.real = a.real + b.real;
tmp.imag = a.imag + b.imag;
return(tmp);

}

Direct arithmetic operations are not possible with structure variables

Defining data type: using typedef
n One may define a structure data-type with a single name

typedef struct newtype {
member-variable1;
member-variable2;

.
member-variableN;

} mytype;
n mytype is the name of the new data-type

¨ Also called an alias for struct newtype
¨ Writing the tag name newtype is optional, can be skipped
¨ Naming follows rules of variable naming

18

typedef : An example

typedef struct {
float real;
float imag;

} _COMPLEX;

n Defined a new data type named _COMPLEX. Now can
declare and use variables of this type

_COMPLEX a, b, c;

n Note: typedef is not restricted to just structures, can define
new types from any existing type

n Example:
¨ typedef int INTEGER
¨ Defines a new type named INTEGER from the known type int
¨ Can now define variables of type INTEGER which will have all

properties of the int type

INTEGER a, b, c;

The earlier program using typedef
typedef struct{

float real;
float imag;

} _COMPLEX;

void swap (_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp = a;
a = b;
b = tmp;

}

Contd.
void print (_COMPLEX a)
{

printf("(%f, %f) \n",a.real,a.imag);
}

void main()
{

_COMPLEX x={4.0,5.0}, y={10.0,15.0};

print(x); print(y);
swap(x,y);
print(x); print(y);

}

n Output:

(4.000000, 5.000000)
(10.000000, 15.000000)
(4.000000, 5.000000)
(10.000000, 15.000000)

n x and y are not swapped! But that has got
nothing to do with structures specially. We
will see its reason shortly

Structures and Functions

n A structure can be passed as argument to
a function

n A function can also return a structure

24

Example: complex number addition
void main()
{

_COMPLEX a, b, c;
scanf(“%f %f”, &a.real, &a.imag);
scanf(“%f %f”, &b.real, &b.imag);
c = add (a, b) ;
printf(“\n %f %f”, c,real, c.imag);

}
_COMPLEX add(_COMPLEX x, _COMPLEX
y)
{

_COMPLEX t;

t.real = x.real + y.real;
t.imag = x.imag + y.imag ;
return (t) ;

}

25

Exercise Problems

1. Extend the complex number program to include functions for
addition, subtraction, multiplication, and division

2. Define a structure for representing a point in two-dimensional
Cartesian co-ordinate system

• Write a function to compute the distance between two given
points

• Write a function to compute the middle point of the line
segment joining two given points

• Write a function to compute the area of a triangle, given the
co-ordinates of its three vertices

Thank You!

