CS10003;
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Floating Point

Representation

" S
Number System : The Basics

m We are accustomed to using the so-called decimal
number system

Ten digits :: 0,1,2,3,4,5,6,7,8,9
Every digit position has a weight which is a power of 10
Base or radix is 10

m Example:
234= 2x10% + 3x 10" + 4 x10°
250.67 = 2x 102 + 5x10' + 0x10° + 6 x 10 + 7 x 102

"
Floating-point Numbers

m Therepresentations discussed so farapplies only to integers.
Cannotrepresent numbers with fractional parts.

m \We canassume a decimal pointbefore a 2’s complement number.
In that case, pure fractions (without integer parts) can be represented.

m \We canalso assume the decimal point somewhere in between.

This lacks flexibility.
Very large and very small numbers cannotbe represented.

JE
Floating Point Numbers (reals)

m o represent numbers like 0.5, 3.1415926, etc, we
need to do something else. First, we need to
represent them in binary, as

E.g. 11.00110 for 2+1+1/8+1/16=3.1875
n=---+am2m---+a222+a12+a0+a_1><%+a_2><2_2+a_3><2_3+-~a_k2_k+---

m Next, we need to rewrite in scientific notation, as
1.100110 x21. That is, the number will be written in
the form:

T.XXXXXX...x2¢ x=0o0rl1

" T
Changing fractions to binary

m Multiply the fraction by 2,...

Stop when the
resultisO

OS] - (0250 —+m (0500) wm(1000) —am (000

Binary

" JE
Transform the fraction 0.875 to binary

Solution

Write the fraction at the left corner. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. Stop when the
number is 0.0.

0.875 = 1.750 = 1.5 = 1.0 = 0.0
0 . 1 1 1

Transform the fraction 0.4 to a binary of 6 bits.

Solution

Write the fraction at the left cornet. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. You can never
get the exact binary representation. Stop when

you have 6 bits.

04 => 08 =>16 =212 => 04 => 08 =>1.6
0 . 0 1] 0 0]

'_
Normalization
m Sign, exponent, and mantissa

Example of normalization

Original Number Move Normalized

+1010001.1101 &6 +2°x1.01000111001
—111.000011 &2 22 x1.11000011

+0.00000111001 6 => +27°x 1.11001
—0.001110011 3=> —27 x 1.110011

" B
Fixed Point Representation

m Consists of a whole or integral part and a fractional part.
m The two parts are separated by a binary point.

m Suppose, there are k whole digits and [fractional digits,

the value obtained Is:
X = {'(=_—11 ;20 = (Xpo1Xp—p * XoX_1X_p " X_1)7
m Ina (k + 1) —bit representation, numbers from

0 to 2% — 2~ can be represented.
m Hence, k decides the range, and [decides the precision.

m As k + [is constant, we have a tradeoff!

JE
Floating Point

m Fixed point representations are hence not good for applications
dealing with very large (needing a larger range), and extremely small
numbers (and hence need precision) at the same time.

m Consider, the (8+8)-bit fixed point numbers:

x = (0000 0000.0000 1001),-- Small Number

y = (1001 0000.0000 0000),-- Large Number

The relative representation error due to truncation or rounding of digits
beyond the 8th position is significant for x, but it is less severe for y.

On, the other hand, neither y2 nor % IS representable in this format!

Floating point numbers address this issue, and is
made of fixed point signed-magnitude number and
an accompanying scale factor.

" J
Normalized numbers in Single Precision

Format
m The normalized numbers are:
(-1)31.f 2127
Here S is the sign bit, f is the Mantissa and E is the exponent.

’ Excess 127 I

1 8 23

Sigh Exponent Mantissa

" JE
IEEE standards for floating-point representation

’ Excess 127 I
1| 8 23
Sign Exponent Mantissa
a. Single Precision
’ Excess_1023 I
N 11 52
Sign Exponent Mantissa

b. Double Precision

Show the representation of the normalized
number +2° x 1.01000111001

Solution

The sign is positive The Excess_127 representation of
the exponentis 133 You add extra Os on the right to
make it 23 bits. The number in memory is stored as:

0 10000101 01000111001000000000000

" S

Example of floating-point representation

Number Sign Exponent Mantissa
-22 x 1.11000011 1 10000001 11000011000000000000000
+26 x 1.11001 0 01111001 11001000000000000000000

-2 x 1.110011 1 01111100 11001100000000000000000

Interpret the following 32-bit floating-point
number

1 11001100000000000000000

Solution

The sign is negative. The exponentis -3 (124 —
127). The number after normalization is

-2 x1.110011

JE
Range of normalized numbers

mf o t=(1.111...1)2254127

E=0 is reserved for zero (with f=0) and denormalized
numbers (with #0).

E=255 is reserved for £oo (with f=0) and for NaN (Not
a Number) (with f#0).

m Thus, f. "=(2-223)2127=(1-2-24)2128,
m Similarly, f_;-*=(1.0)21127=2-126,
m The exponent bias and significand range were

selected so that the reciprocal of all normalized

numbers can be represented without overflow. (in
particular f....*).

" S

Floating Point Number Line

Undnd koorg

0 vrflocs Gwpws
1 Ti ;Wmmf
J;W\H— e Zm:?% (- 2'2\1)2'19
r-12F
>\7;, N \W i M Badked

Thank You!

