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Number System : The Basics

n We are accustomed to using the so-called decimal 
number system
¨ Ten digits ::  0,1,2,3,4,5,6,7,8,9
¨ Every digit position has a weight which is a power of 10
¨ Base or radix is 10

n Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 10-1 +  7 x 10-2
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Floating-point Numbers
n The representations discussed so far applies only to integers.

¨ Cannot represent numbers with fractional parts.
n We can assume a decimal point before a 2’s complement number.

¨ In that case, pure fractions (without integer parts) can be represented.
n We can also assume the decimal point somewhere in between.

¨ This lacks flexibility.
¨ Very large and very small numbers cannot be represented.



n To represent numbers like 0.5, 3.1415926, etc, we 
need to do something else.  First, we need to 
represent them in binary, as

E.g.   11.00110  for 2+1+1/8+1/16=3.1875

n Next, we need to rewrite in scientific notation, as 
1.100110 ×21.  That is, the number will be written in 
the form:
1.xxxxxx… × 2e

Floating Point Numbers (reals)
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Changing fractions to binary

n Multiply the fraction by 2,…



Solution

Write the fraction at the left corner. Multiply the 
number continuously by 2 and extract the 
integer part as the binary digit. Stop when the 
number is 0.0.

0.875  è 1.750  è 1.5    è 1.0   è 0.0
0     .  1             1              1

Transform the fraction 0.875 to binary



Transform the fraction 0.4 to a binary of 6 bits.

Solution

Write the fraction at the left cornet. Multiply the 
number continuously by 2 and extract the 
integer part as the binary digit. You can never 
get the exact binary representation. Stop when 
you have 6 bits.

0.4  è 0.8  è 1.6    è 1.2   è 0.4  è 0.8  è 1.6
0    .  0           1             1             0           0           1



Example of normalization

Move
------------

ç 6
ç 2
6 è
3 è

Original Number
------------

+1010001.1101
−111.000011

+0.00000111001
−0.001110011

Normalized
------------

+26 x 1.01000111001
−22 x 1.11000011
+2−6    x 1.11001
−2−3 x 1.110011

Normalization
n Sign, exponent, and mantissa 



Fixed Point Representation
n



Floating Point
n

Floating point numbers address this issue, and is 
made of fixed point signed-magnitude number and 
an accompanying scale factor. 



Normalized numbers in Single Precision 
Format
n The normalized numbers are: 

(-1)S1.f 2E-127

Here S is the sign bit, f is the Mantissa and E is the exponent.



IEEE standards for floating-point representation



Show the representation of the normalized 
number  + 26 x  1.01000111001

Solution

The sign is positive. The Excess_127 representation of 
the exponent is 133. You add extra 0s on the right to 
make it 23 bits. The number in memory is stored as:

0 10000101 01000111001000000000000



Example of floating-point representation

Sign
----
1
0
1

Mantissa
-------------------------------

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number 
------------

-22 x  1.11000011
+2-6 x  1.11001
-2-3 x  1.110011

Exponent
-----------
10000001
01111001
01111100



Interpret the following 32-bit floating-point 
number

1 01111100 11001100000000000000000

Solution



Range of normalized numbers
n fmax

+= (1.111…1)2254-127

¨E=0 is reserved for zero (with f=0) and denormalized
numbers (with f≠0). 

¨E=255 is reserved for ±∞ (with f=0) and for NaN (Not 
a Number) (with f≠0).

n Thus, fmax
+=(2-2-23)2127=(1-2-24)2128.

n Similarly, fmin
+=(1.0)21-127=2-126.

n The exponent bias and significand range were 
selected so that the reciprocal of all normalized 
numbers can be represented without overflow. (in 
particular fmin

+).



Floating Point Number Line



Thank You!


