
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Floating Point
Representation

2

Number System : The Basics

n We are accustomed to using the so-called decimal
number system
¨ Ten digits :: 0,1,2,3,4,5,6,7,8,9
¨ Every digit position has a weight which is a power of 10
¨ Base or radix is 10

n Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1 + 7 x 10-2

3

Floating-point Numbers
n The representations discussed so far applies only to integers.

¨ Cannot represent numbers with fractional parts.
n We can assume a decimal point before a 2’s complement number.

¨ In that case, pure fractions (without integer parts) can be represented.
n We can also assume the decimal point somewhere in between.

¨ This lacks flexibility.
¨ Very large and very small numbers cannot be represented.

n To represent numbers like 0.5, 3.1415926, etc, we
need to do something else. First, we need to
represent them in binary, as

E.g. 11.00110 for 2+1+1/8+1/16=3.1875

n Next, we need to rewrite in scientific notation, as
1.100110 ×21. That is, the number will be written in
the form:
1.xxxxxx… × 2e

Floating Point Numbers (reals)

2 2 3
2 1 0 1 2 3

12 2 2 2 2 2
2

m k
m kn a a a a a a a a− − −

− − − −= + + + + + × + × + × + +! ! ! !

x = 0 or 1

Changing fractions to binary

n Multiply the fraction by 2,…

Solution

Write the fraction at the left corner. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. Stop when the
number is 0.0.

0.875 è 1.750 è 1.5 è 1.0 è 0.0
0 . 1 1 1

Transform the fraction 0.875 to binary

Transform the fraction 0.4 to a binary of 6 bits.

Solution

Write the fraction at the left cornet. Multiply the
number continuously by 2 and extract the
integer part as the binary digit. You can never
get the exact binary representation. Stop when
you have 6 bits.

0.4 è 0.8 è 1.6 è 1.2 è 0.4 è 0.8 è 1.6
0 . 0 1 1 0 0 1

Example of normalization

Move

ç 6
ç 2
6 è
3 è

Original Number

+1010001.1101
−111.000011

+0.00000111001
−0.001110011

Normalized

+26 x 1.01000111001
−22 x 1.11000011
+2−6 x 1.11001
−2−3 x 1.110011

Normalization
n Sign, exponent, and mantissa

Fixed Point Representation
n

Floating Point
n

Floating point numbers address this issue, and is
made of fixed point signed-magnitude number and
an accompanying scale factor.

Normalized numbers in Single Precision
Format
n The normalized numbers are:

(-1)S1.f 2E-127

Here S is the sign bit, f is the Mantissa and E is the exponent.

IEEE standards for floating-point representation

Show the representation of the normalized
number + 26 x 1.01000111001

Solution

The sign is positive. The Excess_127 representation of
the exponent is 133. You add extra 0s on the right to
make it 23 bits. The number in memory is stored as:

0 10000101 01000111001000000000000

Example of floating-point representation

Sign

1
0
1

Mantissa

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number

-22 x 1.11000011
+2-6 x 1.11001
-2-3 x 1.110011

Exponent

10000001
01111001
01111100

Interpret the following 32-bit floating-point
number

1 01111100 11001100000000000000000

Solution

Range of normalized numbers
n fmax

+= (1.111…1)2254-127

¨E=0 is reserved for zero (with f=0) and denormalized
numbers (with f≠0).

¨E=255 is reserved for ±∞ (with f=0) and for NaN (Not
a Number) (with f≠0).

n Thus, fmax
+=(2-2-23)2127=(1-2-24)2128.

n Similarly, fmin
+=(1.0)21-127=2-126.

n The exponent bias and significand range were
selected so that the reciprocal of all normalized
numbers can be represented without overflow. (in
particular fmin

+).

Floating Point Number Line

Thank You!

