
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Number Systems
& Representation

2

Number System : The Basics

 We are accustomed to using the so-called decimal
number system
 Ten digits :: 0,1,2,3,4,5,6,7,8,9
 Every digit position has a weight which is a power of 10
 Base or radix is 10

 Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1 + 7 x 10-2

3

Binary Number System

 Two digits:
 0 and 1
 Every digit position has a weight which is a power of 2
 Base or radix is 2

 Example:
110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2-1 + 1 x 2-2

4

Positional Number Systems (General)

Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102 + 3 × 101 + 6 × 100 + 2 × 10–1 + 3 × 10–2

Binary Numbers:
 2 Symbols {0,1}, Base or Radix is 2
 101.01 = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2

Octal Numbers:
 8 Symbols {0,1,2,3,4,5,6,7}, Base or Radix is 8
 621.03 = 6 × 82 + 2 × 81 + 1 × 80 + 0 × 8–1 + 3 × 8–2

Hexadecimal Numbers:
 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16
6AF.3C = 6 × 162 + 10 × 161 + 15 × 160 + 3 × 16–1 + 12 × 16–2

5

6

Binary-to-Decimal Conversion

 Each digit position of a binary number has a weight
 Some power of 2

 A binary number:
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

 Corresponding value in decimal:

D = Σ bi 2i
i = -m

n-1

Examples

101011 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

.0101 0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

101.11 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

= 5.75
(101.11)2 = (5.75)10

7

Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on accumulating the
remainders, until the number becomes zero.
Arrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base NumbRem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

2 239
2 119 1
2 59 1
2 29 1
2 14 1
2 7 0
2 3 1
2 1 1

0 1

(66)10 = (1000010)2 (239)10 = (11101111)2

Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634 x 2 = 1.268
.268 x 2 = 0.536
.536 x 2 = 1.072
.072 x 2 = 0.144
.144 x 2 = 0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625 x 2 = 0.125
.1250 x 2 = 0.250
.2500 x 2 = 0.500
.5000 x 2 = 1.000

(.0625)10 = (.0001)2

(37)10 = (100101)2

(.0625)10 = (.0001)2

(37.0625)10 = (100101.0001)2 9

Hexadecimal Number System

 A compact way of representing binary numbers
 16 different symbols (radix = 16)

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

10

Binary-to-Hexadecimal Conversion

 For the integer part,
 Scan the binary number from right to left
 Translate each group of four bits into the corresponding

hexadecimal digit
 Add leading zeros if necessary

 For the fractional part,
 Scan the binary number from left to right
 Translate each group of four bits into the corresponding

hexadecimal digit
 Add trailing zeros if necessary

11

Example
1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

12

Hexadecimal-to-Binary Conversion

 Translate every hexadecimal digit into its 4-bit binary
equivalent

 Examples:
(3A5)16 = (0011 1010 0101)2

(12.3D)16 = (0001 0010 . 0011 1101)2

(1.8)16 = (0001 . 1000)2

13

Unsigned Binary Numbers
 An n-bit binary number

B = bn-1bn-2 …. b2b1b0
 2n distinct combinations are possible, 0 to 2n-1.

 For example, for n = 3, there are 8 distinct
combinations
 000, 001, 010, 011, 100, 101, 110, 111

 Range of numbers that can be represented
n=8 0 to 28-1 (255)
n=16 0 to 216-1 (65535)
n=32 0 to 232-1 (4294967295)

14

Signed Integer Representation

 Many of the numerical data items that are used in a
program are signed (positive or negative)
 Question:: How to represent sign?

 Three possible approaches:
 Sign-magnitude representation
 One’s complement representation
 Two’s complement representation

15

Sign-magnitude Representation
 For an n-bit number representation

 The most significant bit (MSB) indicates sign
0 positive
1 negative

 The remaining n-1 bits represent magnitude

 Range of numbers that can be represented:
Maximum :: + (2n-1 – 1) Minimum :: − (2n-1 – 1)

 A problem: Two different representations of zero
+0 0 000….0 -0 1 000….0

b0b1bn-2bn-1

MagnitudeSign

16

One’s Complement Representation

 Basic idea:
 Positive numbers are represented exactly as in sign-

magnitude form
 Negative numbers are represented in 1’s complement

form

 How to compute the 1’s complement of a number?
 Complement every bit of the number (10 and 01)
 MSB will indicate the sign of the number

0 positive
1 negative

17

Example :: n=4
0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0

To find the representation of, say, -4, first note that
+4 = 0100
-4 = 1’s complement of 0100 = 1011

18

Example (Contd.)
 Range of numbers that can be represented:

Maximum :: + (2n-1 – 1)
Minimum :: − (2n-1 – 1)

 A problem:
Two different representations of zero.

+0 0 000….0
-0 1 111….1

 Advantage of 1’s complement representation
 Subtraction can be done using addition
 Leads to substantial saving in circuitry

19

20

Two’s Complement Representation
 Basic idea:

 Positive numbers are represented exactly as in sign-
magnitude form

 Negative numbers are represented in 2’s complement
form

 How to compute the 2’s complement of a number?
 Complement every bit of the number (10 and 01), and

then add one to the resulting number
 MSB will indicate the sign of the number

0 positive
1 negative

21

Example : n=4
0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

To find the representation of, say, -4, first note that

+4 = 0100
-4 = 2’s complement of 0100 = 1011+1 = 1100

Rule : Value = – msb*2(n–1) + [unsigned value of rest]
Example: 0110 = 0 + 6 = 6 1110 = – 8 + 6 = – 2

22

Example (Contd.)
 Range of numbers that can be represented:

Maximum :: + (2n-1 – 1)
Minimum :: − 2n-1

 Advantage:
 Unique representation of zero
 Subtraction can be done using addition
 Leads to substantial saving in circuitry

 Almost all computers today use the 2’s complement
representation for storing negative numbers

23

Examples from C

 In C
short int

 16 bits + (215-1) to -215

 int or long int
 32 bits + (231-1) to -231

 long long int
 64 bits + (263-1) to -263

24

Adding Binary Numbers

 Basic Rules:
 0+0=0
 0+1=1
 1+0=1
 1+1=0 (carry 1)

 Example:

01101001
00110100

10011101

25

Subtraction Using Addition :: 1’s Complement
 How to compute A – B ?
Compute the 1’s complement of B (say, B1).

Compute R = A + B1

 If the carry obtained after addition is ‘1’
 Add the carry back to R (called end-around carry)
 That is, R = R + 1
 The result is a positive number

Else
 The result is negative, and is in 1’s complement form

26

Example 1 :: 6 – 2

1’s complement of 2 = 1101

6 :: 0110
-2 :: 1101

1 0011
1

0100 +4

Assume 4-bit
representations

Since there is a carry, it is
added back to the result

The result is positive

End-around
carry

R
B1

A

27

Example 2 :: 3 – 5

1’s complement of 5 = 1010

3 :: 0011
-5 :: 1010

1101

Assume 4-bit representations

Since there is no carry, the
result is negative

1101 is the 1’s complement of
0010, that is, it represents –2

A
B1

R

-2

28

Subtraction Using Addition :: 2’s Complement
 How to compute A – B ?
Compute the 2’s complement of B (say, B2)

Compute R = A + B2

 If the carry obtained after addition is ‘1’
 Ignore the carry
 The result is a positive number

Else
 The result is negative, and is in 2’s complement form

29

Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

6 :: 0110
-2 :: 1110

1 0100

Assume 4-bit
representations

Presence of carry indicates
that the result is positive

No need to add the end-
around carry like in 1’s
complement

A
B2

R

Ignore carry
+4

30

Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

3 :: 0011
-5 :: 1011

1110

Assume 4-bit representations

Since there is no carry, the result is
negative

1110 is the 2’s complement of 0010,
that is, it represents –2

A
B2

R

-2

31

2’s complement arithmetic: More Examples
 Example 1: 18-11 = ?
 18 is represented as 00010010
 11 is represented as 00001011
 1’s complement of 11 is 11110100
 2’s complement of 11 is 11110101

 Add 18 to 2’s complement of 11

00010010
+ 11110101

00000111 (with a carry of 1
which is ignored)

00000111 is 7

32

 Example 2: 7 - 9 = ?
 7 is represented as 00000111
 9 is represented as 00001001
 1’s complement of 9 is 11110110
 2’s complement of 9 is 11110111
 Add 7 to 2’s complement of 9

00000111
+ 11110111

11111110 (with a carry of 0
which is ignored)

11111110 is -2

2’s complement arithmetic: More Examples

33

Another equivalent condition : carry in and carry out
from Most Significant Bit (MSB) differ.

(64) 01000000
(4) 00000100

(68) 01000100

carry (out)(in)
0 0

(64) 01000000
(96) 01100000

(-96) 10100000

carry out in
0 1

differ:

overflow

Adding two +ve (-ve) numbers should not produce a
–ve (+ve) number. If it does, overflow (underflow) occurs

Overflow and Underflow

Thank You!

	Slide Number 1
	Number Systems�& Representation
	Number System : The Basics
	Binary Number System
	Positional Number Systems (General)
	Binary-to-Decimal Conversion
	Examples
	Decimal to Binary: Integer Part
	Decimal to Binary: Fraction Part
	Hexadecimal Number System
	Binary-to-Hexadecimal Conversion
	Example
	Hexadecimal-to-Binary Conversion
	Unsigned Binary Numbers
	Signed Integer Representation
	Sign-magnitude Representation
	One’s Complement Representation
	Example :: n=4
	Example (Contd.)
	Two’s Complement Representation
	Example : n=4
	Example (Contd.)
	Examples from C
	Adding Binary Numbers
	Subtraction Using Addition :: 1’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	Subtraction Using Addition :: 2’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	2’s complement arithmetic: More Examples
	Slide Number 32
	Slide Number 33
	Slide Number 34

