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Number System : The Basics

 We are accustomed to using the so-called decimal 
number system
 Ten digits ::  0,1,2,3,4,5,6,7,8,9
 Every digit position has a weight which is a power of 10
 Base or radix is 10

 Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 10-1 +  7 x 10-2
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Binary Number System

 Two digits:
 0 and 1
 Every digit position has a weight which is a power of 2
 Base or radix is 2

 Example:
110 =  1 x 22 +  1 x 21 +  0 x 20

101.01 =  1 x 22 +  0 x 21 +  1 x 20 +  0 x 2-1 +  1 x 2-2
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Positional Number Systems (General)

Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102  +  3 × 101  +  6 × 100 +  2 × 10–1   +  3 × 10–2  

Binary Numbers:
 2 Symbols {0,1}, Base or Radix is 2
 101.01 = 1 × 22  +  0 × 21  +  1 × 20 +  0 × 2–1   +  1 × 2–2  

Octal Numbers:
 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8
 621.03 = 6 × 82  +  2 × 81  +  1 × 80 +  0 × 8–1   +  3 × 8–2  

Hexadecimal Numbers:
 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16
6AF.3C = 6 × 162  +  10 × 161  +  15 × 160 +  3 × 16–1   +  12 × 16–2  
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Binary-to-Decimal Conversion

 Each digit position of a binary number has a weight
 Some power of 2

 A binary number:
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

 Corresponding value in decimal:

D = Σ bi 2i
i = -m

n-1



Examples

101011   1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

.0101       0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

101.11     1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

= 5.75
(101.11)2 = (5.75)10
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Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on accumulating the 
remainders, until the number becomes zero.
Arrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base NumbRem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

2 239
2 119 1
2 59 1
2 29 1
2 14 1
2 7 0
2 3 1
2 1 1

0 1

(66)10 = (1000010)2 (239)10 = (11101111)2



Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625  x  2   =   0.125
.1250  x  2  =    0.250
.2500  x  2   =   0.500
.5000  x  2   =   1.000

(.0625)10 = (.0001)2

(37)10 =  (100101)2

(.0625)10 =  (.0001)2

(37.0625)10 =  (100101.0001)2 9



Hexadecimal Number System

 A compact way of representing binary numbers
 16 different symbols (radix = 16)

0   0000 8   1000
1   0001 9   1001
2   0010 A   1010
3   0011 B   1011
4   0100 C   1100
5   0101 D   1101
6   0110 E   1110
7   0111 F   1111
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Binary-to-Hexadecimal Conversion

 For the integer part,
 Scan the binary number from right to left
 Translate each group of four bits into the corresponding 

hexadecimal digit
 Add leading zeros if necessary

 For the fractional part,
 Scan the binary number from left to right
 Translate each group of four bits into the corresponding 

hexadecimal digit
 Add trailing zeros if necessary
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Example
1. (1011 0100 0011)2 =   (B43)16

2. (10 1010 0001)2 =   (2A1)16

3. (.1000 010)2 =   (.84)16

4. (101 . 0101 111)2 =   (5.5E)16
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Hexadecimal-to-Binary Conversion

 Translate every hexadecimal digit into its 4-bit binary 
equivalent

 Examples:
(3A5)16 =   (0011 1010 0101)2

(12.3D)16 =   (0001 0010 . 0011 1101)2

(1.8)16 =   (0001 . 1000)2
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Unsigned Binary Numbers
 An n-bit binary number

B  =  bn-1bn-2 …. b2b1b0
 2n distinct combinations are possible, 0 to 2n-1.

 For example, for n = 3, there are 8 distinct 
combinations
 000, 001, 010, 011, 100, 101, 110, 111

 Range of numbers that can be represented
n=8  0  to  28-1  (255)
n=16  0  to  216-1 (65535)
n=32  0  to  232-1 (4294967295)
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Signed Integer Representation

 Many of the numerical data items that are used in a 
program are signed (positive or negative)
 Question:: How to represent sign?

 Three possible approaches:
 Sign-magnitude representation
 One’s complement representation
 Two’s complement representation
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Sign-magnitude Representation
 For an n-bit number representation

 The most significant bit (MSB) indicates sign
0   positive
1   negative

 The remaining n-1 bits represent magnitude

 Range of numbers that can be represented:
Maximum  ::  + (2n-1 – 1)               Minimum   ::  − (2n-1 – 1)

 A problem: Two different representations of zero
+0    0 000….0                            -0     1 000….0

b0b1bn-2bn-1

MagnitudeSign
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One’s Complement Representation

 Basic idea:
 Positive numbers are represented exactly as in sign-

magnitude form
 Negative numbers are represented in 1’s complement 

form

 How to compute the 1’s complement of a number?
 Complement every bit of the number (10 and 01)
 MSB will indicate the sign of the number

0   positive
1   negative
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Example  ::  n=4
0000   +0
0001   +1
0010   +2
0011   +3
0100   +4
0101   +5
0110   +6
0111   +7

1000   -7
1001   -6
1010   -5
1011   -4
1100   -3
1101   -2
1110   -1
1111   -0

To find the representation of, say, -4, first note that
+4  =  0100
-4   =  1’s complement of 0100  =  1011
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Example (Contd.)
 Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − (2n-1 – 1)

 A problem:
Two different representations of zero.

+0    0 000….0
-0     1 111….1

 Advantage of 1’s complement representation
 Subtraction can be done using addition
 Leads to substantial saving in circuitry
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Two’s Complement Representation
 Basic idea:

 Positive numbers are represented exactly as in sign-
magnitude form

 Negative numbers are represented in 2’s complement 
form

 How to compute the 2’s complement of a number?
 Complement every bit of the number (10 and 01), and 

then add one to the resulting number
 MSB will indicate the sign of the number

0   positive
1   negative
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Example :  n=4
0000   +0
0001   +1
0010   +2
0011   +3
0100   +4
0101   +5
0110   +6
0111   +7

1000   -8
1001   -7
1010   -6
1011   -5
1100   -4
1101   -3
1110   -2
1111   -1

To find the representation of, say, -4, first note that

+4  =  0100
-4   =  2’s complement of 0100  =  1011+1  =  1100

Rule :  Value = – msb*2(n–1) + [unsigned value of rest]
Example: 0110  =  0 + 6 =  6                   1110 = – 8 + 6  =  – 2
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Example (Contd.)
 Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − 2n-1

 Advantage:
 Unique representation of zero
 Subtraction can be done using addition
 Leads to substantial saving in circuitry

 Almost all computers today use the 2’s complement 
representation for storing negative numbers
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Examples from C

 In C
short int

 16 bits    + (215-1)  to  -215

 int or long int
 32 bits    + (231-1)  to  -231

 long long int
 64 bits    + (263-1)  to  -263
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Adding Binary Numbers

 Basic Rules:
 0+0=0
 0+1=1
 1+0=1
 1+1=0 (carry 1)

 Example:

01101001
00110100
-------------
10011101
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Subtraction Using Addition :: 1’s Complement
 How to compute A – B ?
Compute the 1’s complement of B (say, B1).

Compute R = A + B1

 If the carry obtained after addition is ‘1’
 Add the carry back to R  (called end-around carry)
 That is, R = R + 1
 The result is a positive number

Else
 The result is negative, and is in 1’s complement form



26

Example 1  ::  6 – 2

1’s complement of 2  =  1101

6   ::   0110
-2   ::   1101

1 0011
1

0100     +4

Assume 4-bit 
representations

Since there is a carry, it is 
added back to the result

The result is positive

End-around 
carry

R
B1

A
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Example 2  ::  3 – 5

1’s complement of 5  =  1010

3   ::   0011
-5   ::   1010

1101                        

Assume 4-bit representations

Since there is no carry, the 
result is negative

1101 is the 1’s complement of 
0010, that is, it represents –2

A
B1

R

-2



28

Subtraction Using Addition :: 2’s Complement
 How to compute A – B ?
Compute the 2’s complement of B (say, B2)

Compute R = A + B2

 If the carry obtained after addition is ‘1’
 Ignore the carry
 The result is a positive number

Else
 The result is negative, and is in 2’s complement form
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Example 1  ::  6 – 2

2’s complement of 2  =  1101 + 1  =  1110

6   ::   0110
-2   ::   1110

1 0100

Assume 4-bit 
representations

Presence of carry indicates 
that the result is positive

No need to add the end-
around carry like in 1’s 
complement

A
B2

R

Ignore carry
+4
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Example 2  ::  3 – 5

2’s complement of 5  =  1010 + 1  =  1011

3   ::   0011
-5   ::   1011

1110                      

Assume 4-bit representations

Since there is no carry, the result is 
negative

1110 is the 2’s complement of 0010, 
that is, it represents –2

A
B2

R

-2
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2’s complement arithmetic: More Examples
 Example 1: 18-11 = ?
 18 is represented as 00010010
 11 is represented as 00001011
 1’s complement of 11 is 11110100
 2’s complement of 11 is 11110101

 Add 18 to 2’s complement of 11

00010010
+  11110101
----------------

00000111 (with a carry of 1
which is ignored)

00000111 is 7
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 Example 2: 7 - 9 = ?
 7 is represented as 00000111
 9 is represented as 00001001
 1’s complement of 9 is 11110110
 2’s complement of 9 is 11110111
 Add 7 to 2’s complement of 9

00000111
+  11110111
----------------

11111110 (with a carry of 0
which is ignored)

11111110 is -2

2’s complement arithmetic: More Examples
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Another equivalent condition : carry in and carry out 
from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100

--------------
(68) 01000100

carry (out)(in)
0     0

(64)  01000000
(96)  01100000

--------------
(-96) 10100000

carry  out in
0   1

differ:

overflow

Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs

Overflow and Underflow



Thank You!
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