CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Problem Solving

using Recursion

"
Solving Problems Recursively

® Top-Down Approach:
Base Cases: elementary problem instances with known solutions
Decompose: split problems into smaller instance sub-problems
Recursive Calls: call same function recursively for each sub-problems
Recompose: combine solutions from sub-problems to get result

G

7/~ 7\ Problem
\ P)

Decomposition
uonisodwoday

"
Problem-0: Sum of Squares (Recall ...)

* Sum of squares within range [m,n], i.e.

m? + (m+1)? + (Mm+2)? + ... + (n-1)? + n?
* Solution:
int sumSquares (int m, int n)

{ Base
int middle ; _—
if (m == n) return m*m;
else Decompose

{ /
middle = (m+n)/2; Recurse

Recompose return suquuares(m,middle)‘/A/
- T 4 sumSquares (middle+1,n);

}

W
Problem-0: Annotated Recursion Tree

359
sumSquares(5,10)
110 245
sumSquares(5,7) sumSquares(8,10)
6l 49 145/ 100
sumSquares(5,6) sumSquares(7,7)] |sumSquares(8,9) | |sumSquares(10,10)
/25 36 64 \ 81
S sumSquares(8,8) sum87uares(9,9)
25 36 49 64 8l 100

"
Problem - 1 : Searching an Element
" Function, find (L, n,), to find element x from unordered list L of n elements
Base Case: if n == 1, then compare the only element with x and return
Decompose: split list, L, into two parts, L, and L,, having n, and n,
elements each (n, + n, = n), respectively
Recursive Calls: f, < find (L, n, x) and f, < find (L,, n,, X)
Recompose: if (f_|| f,), then return found, else return not-found

® Points to Ponder:

Does the split position really matters?
" Middle, Arbitrary, Always 1 and (n-1) sized-division ... etc.
The naive approach is a special case of this recursive solution
" Always split into 1 and (n-1) sized lists (think!)
Need to compare n times to find x among n elements

B
Problem - 2 : Finding MAX

® Function, max (L, n), to find maximum from a list L of n elements:
Base Case: if n == 1, then return the only element
Decompose: split list, L, into two parts, L, and L,, having n, and
n, elements each (n, + n, = n), respectively
Recursive Calls: m, — max (L, n)) and m, < max (L, n,)

Recompose: if (m > m,), then return m,, else return m,

® Points to Ponder:
Does the split position really matters?
" Middle, Arbitrary, Always 1 and (n-1) sized-division ... etc.
The naive approach is a special case of this recursive solution
" Always split into (n-1) and 1 sized lists (think!)
Need to compare (n-1) times to get maximum among n elements

" JEE
Problem - 3: Finding MAX+MIN

® Function, maxmin (L, n), to find max+min from list L of n elements:

Base Cases:
" if n == 1, then return the only element as maximum and minimum

" If n == 2, then compare between two elements and return maximum
and minimum

Decompose: split list, L, into two parts, L, and L, having n, and n,
elements each (n, + n, = n), respectively

Recursive Calls:
=" h, < max(L,n)andh, — max(L,,n,)
=] «min(L,n)andl, - min(L, n,)
Recompose:

= if (h, > h,), then return h, as maximum, else return h, as maximum

mif (I. <1), then return |, as minimum, else return |, as minimum
1 2 1 2

B
Problem - 3: Finding MAX+MIN

® Points to Ponder:

The naive approach is to traverse the elements twice - once for finding
max and again for finding min

" Total comparisons=(n-1)+(n-1)=2n-2
Smart Observations leads to better approach!
" Take two elements at a time when finding max
" Total comparisons for max finding=n/2+n/4 +...+1=(n-1)
" Then, the first round losers (i.e. n/2 elements) are candidates for min
" Total comparisons for min finding now = (ni2 - 1)
Does the split position really matters to reduce number of comparison?
" Check for comparisons with 1 and n-1 split — 2(n - 1)
" Check for comparisons with 2 and n-2 split — 3n/2 - 2
" Check for comparisons with middle split - 3n/2 - 2

" JEE
Problem - 4: Generate all Permutations of String

B Strategy:

permute(a,0,2)

ABC

swap(0,0) swap](0,1) swap(0,2)
permute(a,1,2) I ermute(a,l,2)
)

A B C

swap(1,1)

permute(a,2,2) swip(1.2)

a,2,2)

swap(1,1)

permute(a,Z,2)

B A C

swap(1,2)

permyte(a,2,2)

C B

A

ABC ACB

B

AC

B C A

B Recursive Formulation and Solution:

Do Yourself ! :-)

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

