
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

Problem Solving
using Recursion

3

Solving Problems Solving Problems RecursivelyRecursively
 Top-Down Approach:Top-Down Approach:

 Base Cases:Base Cases: elementary problem instances with known solutions elementary problem instances with known solutions
 Decompose:Decompose: split problems into smaller instance sub-problems split problems into smaller instance sub-problems
 Recursive Calls:Recursive Calls: call same function recursively for each sub-problems call same function recursively for each sub-problems
 Recompose:Recompose: combine solutions from sub-problems to get result combine solutions from sub-problems to get result

4

 Sum of squares within range [m,n], i.e.Sum of squares within range [m,n], i.e.
mm22 + (m+1) + (m+1)22 + (m+2) + (m+2)22 + … + (n-1) + … + (n-1)22 + n + n22

 Solution:Solution:
int sumSquares (int m, int n) int sumSquares (int m, int n)

{ {

 int middle ;int middle ;

 if (m == n) return m*m;if (m == n) return m*m;

 else else
 { {

 middle = (m+n)/2; middle = (m+n)/2;

 return sumSquares(m,middle) return sumSquares(m,middle)

 + sumSquares(middle+1,n);+ sumSquares(middle+1,n);

 }}

}}

Problem-0: Problem-0: Sum of Squares Sum of Squares (Recall ...)(Recall ...)

RecomposeRecompose

DecomposeDecompose

RecurseRecurse

BaseBase

5

Problem-0: Problem-0: Annotated Recursion TreeAnnotated Recursion Tree

sumSquares(5,10)sumSquares(5,10)sumSquares(5,10)sumSquares(5,10)

sumSquares(5,7)sumSquares(5,7) sumSquares(8,10)sumSquares(8,10)

sumSquares(5,6)sumSquares(5,6) sumSquares(7,7)sumSquares(7,7) sumSquares(8,9)sumSquares(8,9) sumSquares(10,10)sumSquares(10,10)

sumSquares(5,5)sumSquares(5,5) sumSquares(6,6)sumSquares(6,6) sumSquares(8,8)sumSquares(8,8) sumSquares(9,9)sumSquares(9,9)

355355

110110

6161 4949

245245

145145 100100

2525 3636 6464 8181

2525 3636 4949 6464 8181 100100

Problem – 1 : Problem – 1 : Searching an ElementSearching an Element
 Function, Function, find (L, n, x)find (L, n, x), to find element , to find element xx from unordered list from unordered list LL of of n n elementselements

 Base Case:Base Case: if n == 1, then compare the only element with x and return if n == 1, then compare the only element with x and return

 Decompose:Decompose: split list, L, into two parts, L split list, L, into two parts, L
11 and L and L

22, having n, having n
11 and n and n

22

elements each (nelements each (n
11 + n + n

22 = n), respectively = n), respectively

 Recursive Calls:Recursive Calls: f f11 ← find (L ← find (L
11, n, n

11, x) and f, x) and f
22 ← find (L ← find (L

22, n, n
22, x), x)

 Recompose:Recompose: if (f if (f
11 || f || f

22), then return found, else return not-found), then return found, else return not-found

 Points to Ponder:Points to Ponder:
 Does the split position really matters?Does the split position really matters?

 Middle, Arbitrary, Always 1 and (n-1) sized-division … etc.Middle, Arbitrary, Always 1 and (n-1) sized-division … etc.
 The naive approach is a special case of this recursive solutionThe naive approach is a special case of this recursive solution

 Always split into 1 and (n-1) sized lists (think!)Always split into 1 and (n-1) sized lists (think!)
 Need to compare n times to find x among n elementsNeed to compare n times to find x among n elements

Problem – 2 : Problem – 2 : Finding MAXFinding MAX
 Function, Function, max (L, n)max (L, n), to find maximum from a list , to find maximum from a list LL of of nn elements: elements:

 Base Case:Base Case: if n == 1, then return the only element if n == 1, then return the only element

 Decompose:Decompose: split list, L, into two parts, L split list, L, into two parts, L
11 and L and L

22, having n, having n
11 and and

nn22 elements each (n elements each (n
11 + n + n

22 = n), respectively = n), respectively

 Recursive Calls:Recursive Calls: m m11 ← max (L ← max (L
11, n, n

11) and m) and m
22 ← max (L ← max (L

22, n, n
22))

 Recompose:Recompose: if (m if (m
11 > m > m

22), then return m), then return m
11, else return m, else return m

22

 Points to Ponder:Points to Ponder:
 Does the split position really matters?Does the split position really matters?

 Middle, Arbitrary, Always 1 and (n-1) sized-division … etc.Middle, Arbitrary, Always 1 and (n-1) sized-division … etc.
 The naive approach is a special case of this recursive solutionThe naive approach is a special case of this recursive solution

 Always split into (n-1) and 1 sized lists (think!)Always split into (n-1) and 1 sized lists (think!)
 Need to compare (n-1) times to get maximum among n elementsNeed to compare (n-1) times to get maximum among n elements

Problem – 3: Problem – 3: Finding MAX+MINFinding MAX+MIN
 Function, Function, maxmin (L, n)maxmin (L, n), to find max+min from list , to find max+min from list LL of of nn elements: elements:

 Base CasesBase Cases::
 if n == 1, then return the only element as maximum and minimumif n == 1, then return the only element as maximum and minimum
 If n == 2, then compare between two elements and return maximum If n == 2, then compare between two elements and return maximum

and minimumand minimum

 DecomposeDecompose:: split list, L, into two parts, L split list, L, into two parts, L
11 and L and L

22, having n, having n
11 and n and n

22

elements each (nelements each (n
11 + n + n

22 = n), respectively = n), respectively

 Recursive CallsRecursive Calls::
 hh11 ← max (L ← max (L

11, n, n
11) and h) and h

22 ← max (L ← max (L
22, n, n

22))

 ll11 ← min (L ← min (L
11, n, n

11) and l) and l
22 ← min (L ← min (L

22, n, n
22))

 RecomposeRecompose::
 if (hif (h

11 > h > h
22), then return h), then return h

11 as maximum, else return h as maximum, else return h
22 as maximum as maximum

 if (lif (l
11 < l < l

22), then return l), then return l
11 as minimum, else return l as minimum, else return l

22 as minimum as minimum

Problem – 3: Problem – 3: Finding MAX+MINFinding MAX+MIN
 Points to Ponder:Points to Ponder:

 The naive approach is to traverse the elements twice – The naive approach is to traverse the elements twice – once for finding once for finding
max and again for finding minmax and again for finding min

 Total comparisons = (n - 1) + (n - 1) = 2n - 2Total comparisons = (n - 1) + (n - 1) = 2n - 2
 SmartSmart Observations leads to better approach! Observations leads to better approach!

 Take two elements at a time when finding maxTake two elements at a time when finding max
 Total comparisons for max finding = n/2 + n/4 + … + 1 = (n – 1)Total comparisons for max finding = n/2 + n/4 + … + 1 = (n – 1)
 Then, the first round losers (i.e. n/2 elements) are candidates for minThen, the first round losers (i.e. n/2 elements) are candidates for min
 Total comparisons for min finding now = (n/2 - 1)Total comparisons for min finding now = (n/2 - 1)

 Does the split position really matters to reduce number of comparison?Does the split position really matters to reduce number of comparison?
 Check for comparisons with 1 and n-1 split → 2(n - 1)Check for comparisons with 1 and n-1 split → 2(n - 1)
 Check for comparisons with 2 and n-2 split → 3n/2 - 2Check for comparisons with 2 and n-2 split → 3n/2 - 2
 Check for comparisons with middle split → 3n/2 - 2Check for comparisons with middle split → 3n/2 - 2

Problem – 4: Problem – 4: Generate all Permutations of StringGenerate all Permutations of String
 Strategy:Strategy:

 Recursive Formulation and Solution:Recursive Formulation and Solution:
 Do Yourself ! :-)Do Yourself ! :-)

Thank You!Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

