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1-d Arrays



Printing numbers in reverse
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● Given 5 integers as inputs, print them in reverse order.

#include<stdio.h>

int main()

{

    int a, b, c, d, e;

    printf("Enter 5 integers: ");

    scanf("%d%d%d%d%d", &a, &b, &c, &d, &e);

    printf("The numbers in reverse order: ");

    printf("%d, %d, %d, %d, %d", e, d, c, b, a);

    return 0;

}



Printing numbers in reverse: continued
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● What if there are 1000 integers? Use 1000 variables?

● Solution: use arrays.

● Array is a data structure which can represent a collection 
of data items which have the same data type 
(float/int/char/…).

● This is exactly what will help us here!



Printing in numbers in reverse Using Arrays

int main()

{

     int n, A[100], i;

 printf(“How many numbers to read? “);

     scanf(“%d”, &n);

     for (i = 0; i < n; ++i)

scanf(“%d”, &A[i]);

     for (i = n -1; i >= 0; --i)

printf(“%d  ”, A[i]);

     printf(“\n”);

     return 0;

}
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Using Arrays

All the data items constituting the group share the same name

int  x[10];

Individual elements are accessed by specifying the index

x[0] x[1] x[2] x[9]

X is a 10-element one 
dimensional array
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Another example

int main()
{
  int i;
  int data[10];
  for (i=0; i<10; i++) 
    data[i]= i;
  i=0;
  while (i<10)
  {
    printf("Data[%d] = %d\n", i, data[i]);
    i++;
  }
  return 0;
}

 “data refers to a block of 10

 integer variables, data[0], data[1], 

 …, data[9]   
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The result

int main()
{
  int i;
  int data[10];
  for (i=0; i<10; i++) data[i]= i;
  i=0;
  while (i<10)
  {
    printf("Data[%d] = %d\n", i, data[i]);
    i++;
  }
  Return 0;
}

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

 Array size constant

Output
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Declaring Arrays

● Like variables, the arrays used in a program must be 
declared before they are used.

● General syntax:

– type array-name [size]; type specifies the type of 
element that will be contained in the array (int, 
float, char, etc.)

– size is an integer constant which indicates the 
maximum number of elements that can be stored 
inside the array.

●  int  marks [5]. marks is an array that can store a       
   maximum of 5 integers.
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●Examples:
    int  x[10];

    char  word[10];

    float  distance[150];

    char  name[35];

● If we are not sure of the exact size of the array, we can define 
an array of a large size

    int   marks[50];

    though in a particular run we may only be using, say, 10 
elements.
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Accessing array elements

● A particular element of the array can be accessed by specifying 
two things:

● Name of the array
● Index (relative position) of the element in the array

● In C, the index of an array starts from zero

● Example:

● An array is defined as int  x[10];
● The first element of the array x can be accessed as x[0], 

fourth element as x[3], tenth element as x[9], etc.
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Contd.

● The array index must evaluate to an integer between 0 
and n-1 where n is the maximum number of elements 
possible in the array
    a[x+2] = 25;
    b[3*x-y] = a[10-x] + 5;

● Remember that each array element is a variable in itself, 
and can be used anywhere a variable can be used (in 
expressions, assignments, conditions,…)
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How is an array stored in memory?

● Starting from a given memory location, the successive 
array elements are allocated space in consecutive 
memory locations

● x: starting address of the array in memory
● k: number of bytes allocated per array element

● a[i]  is allocated memory location at address  �
 x + i*k

Array a
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Storage

int main()
{
  int i;
  int data[10];
  for(i=0; i<10; i++)
  printf("&Data[%d] = %u\n", i, &data[i]);
  return 0;
}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output
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Initialization of Arrays

● General form:

   type   array_name[size]  =  { list of values };
● Examples:

   int  marks[5] = {72, 83, 65, 80, 76};

   char  name[4] = {‘A’, ‘m’, ‘i’, ‘t’};
● The size may be omitted. In such cases the 

compiler automatically allocates enough space 
for all initialized elements

         int   flag[ ] = {1, 1, 1, 0};

         char  name[ ] = {‘A’, ‘m’, ‘i’, ‘t’};
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How to read the elements of an array?

● By reading them one element at a time

    for  (j=0; j<25; j++)

        scanf  (“%f”, &a[j]);

● The ampersand (&) is necessary

● The elements can be entered all in one line or in different 

lines
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