
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

2

1-d Arrays

Printing numbers in reverse

3

● Given 5 integers as inputs, print them in reverse order.

#include<stdio.h>

int main()

{

 int a, b, c, d, e;

 printf("Enter 5 integers: ");

 scanf("%d%d%d%d%d", &a, &b, &c, &d, &e);

 printf("The numbers in reverse order: ");

 printf("%d, %d, %d, %d, %d", e, d, c, b, a);

 return 0;

}

Printing numbers in reverse: continued

4

● What if there are 1000 integers? Use 1000 variables?

● Solution: use arrays.

● Array is a data structure which can represent a collection
of data items which have the same data type
(float/int/char/…).

● This is exactly what will help us here!

Printing in numbers in reverse Using Arrays

int main()

{

 int n, A[100], i;

 printf(“How many numbers to read? “);

 scanf(“%d”, &n);

 for (i = 0; i < n; ++i)

scanf(“%d”, &A[i]);

 for (i = n -1; i >= 0; --i)

printf(“%d ”, A[i]);

 printf(“\n”);

 return 0;

}

6

Using Arrays

All the data items constituting the group share the same name

int x[10];

Individual elements are accessed by specifying the index

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

7

Another example

int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++)
 data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 return 0;
}

 “data refers to a block of 10

 integer variables, data[0], data[1],

 …, data[9]

8

The result

int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++) data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 Return 0;
}

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

 Array size constant

Output

9

Declaring Arrays

● Like variables, the arrays used in a program must be
declared before they are used.

● General syntax:

– type array-name [size]; type specifies the type of
element that will be contained in the array (int,
float, char, etc.)

– size is an integer constant which indicates the
maximum number of elements that can be stored
inside the array.

● int marks [5]. marks is an array that can store a
 maximum of 5 integers.

10

●Examples:
 int x[10];

 char word[10];

 float distance[150];

 char name[35];

● If we are not sure of the exact size of the array, we can define
an array of a large size

 int marks[50];

 though in a particular run we may only be using, say, 10
elements.

11

Accessing array elements

● A particular element of the array can be accessed by specifying
two things:

● Name of the array
● Index (relative position) of the element in the array

● In C, the index of an array starts from zero

● Example:

● An array is defined as int x[10];
● The first element of the array x can be accessed as x[0],

fourth element as x[3], tenth element as x[9], etc.

12

Contd.

● The array index must evaluate to an integer between 0
and n-1 where n is the maximum number of elements
possible in the array
 a[x+2] = 25;
 b[3*x-y] = a[10-x] + 5;

● Remember that each array element is a variable in itself,
and can be used anywhere a variable can be used (in
expressions, assignments, conditions,…)

13

How is an array stored in memory?

● Starting from a given memory location, the successive
array elements are allocated space in consecutive
memory locations

● x: starting address of the array in memory
● k: number of bytes allocated per array element

● a[i] is allocated memory location at address �
 x + i*k

Array a

14

Storage

int main()
{
 int i;
 int data[10];
 for(i=0; i<10; i++)
 printf("&Data[%d] = %u\n", i, &data[i]);
 return 0;
}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

15

Initialization of Arrays

● General form:

 type array_name[size] = { list of values };
● Examples:

 int marks[5] = {72, 83, 65, 80, 76};

 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};
● The size may be omitted. In such cases the

compiler automatically allocates enough space
for all initialized elements

 int flag[] = {1, 1, 1, 0};

 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

16

How to read the elements of an array?

● By reading them one element at a time

 for (j=0; j<25; j++)

 scanf (“%f”, &a[j]);

● The ampersand (&) is necessary

● The elements can be entered all in one line or in different

lines

	Slide 1
	Slide 2
	Array
	Slide 4
	Printing in Reverse Using Arrays
	Using Arrays
	A first example
	The result
	Declaring Arrays
	Slide 10
	Accessing Array Elements
	Contd.
	How is an array stored in memory?
	Storage
	Initialization of Arrays
	How to read the elements of an array?

