
CS10003:

Programming & Data Structures

Dept. of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Autumn 2020

Iterations and

Loops – contd.

Most commonly used looping structure in C

Looping: for Statement

for (expr1; expr2; expr3)

 statement;

for (expr1; expr2; expr3)

{

 Block of statements;

}

expr1 (init) : initialize parameters

expr2 (test): test condition, loop

continues if expression is non-0

expr3 (update): used to alter the

value of the parameters after

each iteration

statement (body): body of loop

expr1

(init)

expr2

(test)

statement

(body)

expr3

(update)

False

True

for (expr1; expr2; expr3)

 statement;

for (expr1; expr2; expr3)

{

 Block of statements;

}

Example: Computing Factorial

int main () {

 int N, count, prod;

 scanf (“%d”, &N) ;

 prod = 1;

 for (count = 1;count <= N; ++count)

 prod = prod * count;

 printf (“Factorial = %d\n”, prod) ;

 return 0;

}

Computing ex series up to N terms

int main () {

 float x, term, sum;

 int n, count;

 scanf (“%f”, &x);

 scanf (“%d”, &n);

 term = 1.0; sum = 0;

 for (count = 1; count <= n; ++count) {

 sum += term;

 term = x/count;

 }

 printf (“%f\n”, sum);

 return 0;

}
eseries-1.c

Computing ex series up to 4 decimal
places

int main () {

 float x, term, sum;

 int cnt;

 scanf (“%f”, &x) ;

 term = 1.0; sum = 0;

 for (cnt = 1; term >= 0.0001; ++cnt) {

 sum += term;

 term *= x/cnt;

 }

 printf (“%f\n”, sum) ;

 return 0;

}
eseries-2.c

expr1;

while (expr2) {

 statement

 expr3;

}

Equivalence of for and while

for (expr1; expr2; expr3)

 statement;

Same as

expr1

(init)

expr2

(test)

statement

(body)

expr3

(update)

False

True

int main () {

 int N, count, sum;

 scanf (“%d”, &N) ;

 sum = 0;

 count = 1;

 while (count <= N) {

 sum = sum + count;

 count = count + 1;

 }

 printf (“%d\n”, sum) ;

 return 0;

}

int main () {

 int N, count, sum;

 scanf (“%d”, &N) ;

 sum = 0;

 for (count=1; count <= N; ++count) {

 sum = sum + count;

 }

 printf (“%d\n”, sum) ;

 return 0;

}

Sum of first N Natural Numbers

Advanced expression in for structure

Arithmetic expressions

Initialization, loop-continuation, and increment can contain
arithmetic expressions.

e.g. Let x = 2 and y = 10

 for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to

 for (j = 2; j <= 80; j += 5)

"Increment" may be negative (decrement)

If loop continuation condition initially false

Body of for structure not performed
Control proceeds with statement after for structure

Looping: do-while statement

do

 statement;

while (expression);

do {

 Block of statements;

} while (expression);

statement

expression

False

True

Example

Problem: Prompt user to input “month” value, keep

prompting until a correct value of month is given

as input

 do {

 printf (“Please input month {1-12}”);

 scanf (“%d”, &month);

 } while ((month < 1) || (month > 12));

Comparison between do-while and while

do {

 Block of statements;

} while (expression);

statement

expression

False

True

expression

statement

(loop body)

False

True

while (expression) {

 Block of statements;

}

Decimal to binary conversion
(prints binary in reverse order)

int main()

{

 int dec;

 scanf (“%d”, &dec);

 do {

 printf (“%2d”, (dec % 2));

 dec = dec / 2;

 } while (dec != 0);

 printf (“\n”);

 return 0;

}

Echo characters typed on screen
until end of line

int main ()

{

 char echo ;

 do {

 scanf (“%c”, &echo);

 printf (“%c”,echo);

 } while (echo != ‘\n’) ;

 return 0;

}

Sentinel-Controlled Loop

Receive a number of positive
integers and display the
summation and average of
these integers.

A negative or zero input
indicates the end of input
process

Input: A set of integers

ending with a

negative integer or a zero

Output: Summation and

Average of these integers

Input Example:

 30 16 42 -9

Output Example:

 Sum = 88

 Average = 29.33

Sentinel

Value

Specifying “Infinite Loop”

count=1;

while(1) {

 printf(“Count=%d”,count);

 count++;

}

count=1;

do {

 printf(“Count=%d”,count);

 count++;

} while(1);

count=1;

for(;;) {

 printf(“Count=%d”,count);

 count++;

}

for(count=1;;count++) {

 printf(“Count=%d”,count);

}

Specifying “Infinite Loop”

while (1) {

 statements

}

for (; ;)

{

 statements

}

do {

 statements

} while (1);

break Statement
Break out of the loop { }

can use with

while, do while, for, switch

does not work with

if {}

else {}

Causes immediate exit from a while, for, do/while or

switch structure

Program execution continues with the first statement

after the structure

Common uses of the break statement

Escape early from a loop

Skip the remainder of a switch structure

Break from “Infinite Loop”

count=1;

while(1) {

 printf(“Count=%d”,count);

 count++;

 if(count>100)

 break;

}

count=1;

do {

 printf(“Count=%d”,count);

 count++;

 if(count>100)

 break;

} while(1);

count=1;

for(;;) {

 printf(“Count=%d”,count);

 count++;

 if(count>100)

 break;

}

for(count=1;;count++) {

 printf(“Count=%d”,count);

 if(count>100)

 break;

}

Thank You!

