
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Operations and
Conditional
Assignments

Operator Precedence and
Associativity
An explicitly parenthesized arithmetic (and/or logical)

expression clearly indicates the sequence of
operations to be performed on its arguments.

However, it is quite common that we do not write all
the parentheses in such expressions.

Instead, we use some rules of precedence and
associativity, that make the sequence clear.

For example, the expression
a + b * c conventionally stands for

a + (b * c)
and not for (a + b) * c

Another ambiguity

Let us look at the expression a - b - c
Now the common operand b belongs to two same

operators (subtraction).
They have the same precedence. Now we can

evaluate this as
(a - b) - c or as
a - (b - c)
Again the two expressions may evaluate to different values.
The convention is that the first interpretation is correct.

In other words, the subtraction operator is left-
associative.

Associativity and Precedence
Operator(s) Type Associativity

++ -- unary non-associative

- ~ unary right

* / % binary left

+ - binary left

<< >> binary left

& binary left

| ^ binary left

= += -= *= etc. binary right

Unary operators
Consider ++a and a++

there is a subtle difference between the two.
Recall that every assignment returns a value.
The increment (or decrement) expressions ++a and a++ are

also assignment expressions.
Both stand for "increment the value of a by 1". But

then which value of a is returned by this expression?
We have the following rules:
For a++ the older value of a is returned and then the value of

a is incremented. This is why it is called the post-increment
operation.

For ++a the value of a is first incremented and this new
(incremented) value of a is returned. This is why it is called
the pre-increment operation.

A sample code
#include<stdio.h>
main()
{
int a, s;
a=1;
printf("a++=%d\n",a++);
printf("++a=%d\n",++a);

}

Can lead to ambiguities…

#include<stdio.h>
main()
{
int a, s;
a=1;
printf(“++a=%d,a++=\n",++a,a++);
}

Conditions and
Branching

Think about mathematical definitions like the
following. Suppose we want to assign to y
the absolute value of an integer (or real
number) x. Mathematically, we can express
this idea as:

y=0 if x = 0,
y = x if x > 0,
-x if x < 0.

Fibonacci numbers

Fn= 0 if n = 0,
Fn = 1 if n = 1,
Fn = Fn-1 + Fn-2 if n >= 2.

Conditional World

If your program has to work in such a
conditional world, you need two constructs:
A way to specify conditions (like x < 0, or

n >= 2).
A way to selectively choose different blocks of

statements depending on the outcomes of the
condition checks.

Logical Conditions

Let us first look at the rendering of logical
conditions in C.

A logical condition evaluates to a Boolean
value, i.e., either "true" or "false".

For example, if the variable x stores the
value 15, then the logical condition x > 10
is true, whereas the logical condition
x > 100 is false.

Mathematical Relations
Relational operator Usage Condition is true iff

== E1 == E2 E1 and E2 evaluate to the same value

!= E1 != E2 E1 and E2 evaluate to different values

< E1 < E2 E1 evaluates to a value smaller than E2

<= E1 <= E2 E1 evaluates to a value smaller than or equal to E2

> E1 > E2 E1 evaluates to a value larger than E2

>= E1 >= E2 E1 evaluates to a value larger than or equal to E2

Examples
Let x and y be integer variables holding the

values 15 and 40 at a certain point in time.
At that time, the following truth values hold:
x == y False
x != y True
y % x == 10 True
600 < x * y False
600 <= x * y True
'B' > 'A' True
x / 0.3 == 50 False (due to floating point errors)

Booleaan Values in C
A funny thing about C is that it does not support any Boolean data type.
Instead it uses any value (integer, floating point, character, etc.) as a

Boolean value.
Any non-zero value of an expression evaluates to "true", and the zero

value evaluates to "false". In fact, C allows expressions as logical
conditions.

Example:
0 False
1 True
6 - 2 * 3 False
(6 - 2) * 3 True
0.0075 True
0e10 False
'A' True
'\0' False
x = 0 False
x = 1 True

The last two examples point out the potential danger of mistakenly
writing = in place of ==. Recall that an assignment returns a value,
which is the value that is assigned.

Logical Operators
Logical operator Syntax True if and only if

AND C1 && C2 Both C1 and C2 are true

OR C1 || C2 Either C1 or C2 or both are true

NOT !C C is false

Examples

(7*7 < 50) && (50 < 8*8) True
(7*7 < 50) && (8*8 < 50) False
(7*7 < 50) || (8*8 < 50) True
!(8*8 < 50) True
('A' > 'B') || ('a' > 'b') False
('A' > 'B') || ('A' < 'B') True
('A' < 'B') && !('a' > 'b') True

Note

Notice that here is yet another source of
logical bug. Using a single & and | in order
to denote a logical operator actually means
letting the program perform a bit-wise
operation and possibly ending up in a
logically incorrect answer

Associativity of Logical
Operators

Operator(s) Type Associativity

! Unary Right

< <= > >= Binary Left

== != Binary Left

&& Binary Left

|| Binary Left

Examples

x <= y && y <= z || a >= b is equivalent to
((x <= y) && (y <= z)) || (a >= b).

C1 && C2 && C3 is equivalent to
(C1 && C2) && C3.

a > b > c is equivalent to
(a > b) > c.

The If Statement
C Statement:

if(Condition)
Block1;

scanf("%d",&x);
if (x < 0) x = -x;
x=x+1;

The If else Statement
C Statement:
if (Condition)
{ Block 1 }
else { Block 2 }

scanf("%d",&x);
if (x >= 0) y = x;
else y = -x;
x=x+1;

Ternary Operator
Consists of two symbols: ? and :

example,
larger = (i > j) : i : j;

i and j are two test expressions.
Depending on whether i > j, larger (the variable

on the left) is assigned.
if (i > j), larger = i
else (i,e i<=j), larger = j

This is the only operator in C which takes three
operands.

The ternary statement

Consider the following special form of the if-else
statement:

if (C) v = E1; else v = E2; Here depending upon the
condition C, the variable v is assigned the value of
either the expression E1 or the expression E2. This
can be alternatively described as:

v = (C) ? E1 : E2; Here is an explicit example.
Suppose we want to compute the larger of two
numbers x and y and store the result in z. We can
write:

z = (x >= y) ? x : y;

Comma Operator

int i, j;
i=(j=1,j+10);
What is the result? j=11.

Nested If else
Suppose that we want to compute the absolute value

|xy| of the product of two integers x and y and store
the value in z. Here is a possible way of doing it:

if (x >= 0)
{ z = x;

if (y >= 0) z *= y;
else z *= -y; }

else { z = -x;
if (y >= 0) z *= y;
else z *= -y; }

This can also be implemented as:
if (x >= 0) z = x; else z = -x;
if (y >= 0) z *= y; else z *= -y;

Here is a third way of doing the same:
if (((x >= 0)&&(y >= 0)) || ((x < 0)&&(y < 0)))

z = x * y;
else z = -x * y;

Repeated if-else statements
A structure of the last figure can be translated into C

as:
if (Condition 1)

{ Block 1 }
else if (Condition 2)

{ Block 2 }
else if }
else if (Condition n)

{ Block n }
else
{ Block n+1 }

Example

Here is a possible implementation of the
assignment y = |x|:

scanf("%d",&x);
if (x == 0) y = 0;
else if (x > 0) y = x;
else y = -x;

The Switch Statement

switch (E)
{ case val1 : Block 1 break;
case val2 : Block 2 break;
...

case valn : Block n break;
default: Block n+1
}

Example
char lang; ...

switch (lang) {
case ‘B’: printf(“Dhanyabad\n”); break;
case 'E' : printf("Thanks\n"); break;
case 'F' : printf("Merci\n"); break;
case 'G' : printf("Danke\n"); break;
case 'H' : printf("Shukriya\n"); break;
case 'I' : printf("Grazie\n"); break;
case 'J' : printf("Arigato\n"); break;
case 'K' : printf("Dhanyabaadagaru\n"); break;
default : printf("Thanks\n"); }

Switch is strange

Switch statements are strange.
It checks for the satisfying value of the

condition it is checking.
Once a match is found, further checks are

disabled and all the subsequent
statements are done one after the other,
irrespective of the condition.

Example

There are, however, situations where this
odd behavior of switch can be exploited.
Let us look at an artificial example.
Suppose you want to compute the sum

n + (n+1) + ... + 10

Using the strangeness of Switch
switch (n) {

case 0 :
case 1 : sum += 1;
case 2 : sum += 2;
case 3 : sum += 3;
case 4 : sum += 4;
case 5 : sum += 5;
case 6 : sum += 6;
case 7 : sum += 7;
case 8 : sum += 8;
case 9 : sum += 9;
case 10 : sum += 10;

break;
default : printf("n = %d is not in the desired range...\n", n);

}

Displaying a menu and using Switch
#include<stdio.h>
main()
{

int choice;

printf("Choice of destination:\n");
printf("\t1 - Mercury\n");
printf("\t2 - Venus\n");
printf("\t3 - Mars\n");
printf("Enter the number corresponding to your choice: ");
scanf("%d",&choice);

switch(choice)
{

case 1:
puts("Mercury is closest to the sun.");
puts("So, the weather may be quite hot

there.");
puts("The journey will cost you 10000

IGCs.");
//break;

case 2:
puts("Venus is the second planet from

the sun.");
puts("The weather is probably hot and

poisonous.");
puts("The journey will cost 5000

IGCs.");
break;

The output menu
case 3:

puts("Mars is the closest planet to earth in the solar system.");
puts("There is probably some form of life there.");
puts("The journey will cost 3000 IGCs.");
break;

default:
puts("Unknown destination.\n");
break;

}
puts("\n Note: IGC = Inter Galactic Currency\n");

-bash-3.2$./a.out
Choice of destination:

1 - Mercury
2 - Venus
3 - Mars

Enter the number corresponding to your choice:

