
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Assignments
and Arithmetic
Operations

Assignments

Initialization during declaration helps one store
constant values in memory allocated to variables.
Later one typically does a sequence of the following:
Read the values stored in variables.
Do some operations on these values.
Store the result back in some variable.

This three-stage process is effected by an
assignment operation. A generic assignment
operation looks like: variable = expression;

Assignments are Imperative
Here expression consists of variables and constants

combined using arithmetic and logical operators.
The equality sign (=) is the assignment operator.
To the left of this operator resides the name of a variable.

All the variables present in expression are loaded to the
CPU. The ALU then evaluates the expression on these
values.

The final result is stored in the location allocated to
variable.

The semicolon at the end is mandatory and denotes that
the particular statement is over. It is a statement delimiter

Imperative Programming
A C program typically consists of a sequence

of statements. They are executed one-by-
one from top to bottom (unless some
explicit jump instruction or function call is
encountered). This sequential execution of
statements gives C a distinctive
imperative flavor.

This means that the sequence in which
statements are executed decides the final
values stored in variables.

Example
int x = 43, y = 15; /* Two integer

variables are declared and initialized */
x = y + 5; /* The value 15 of y is fetched and
added to 5. The sum 20 is stored in the
memory location for x. */
y = x; /* The value stored in x, i.e., 20 is
fetched and stored back in y. */

After these statements are executed both the
memory locations for x and y store the integer
value 20.

Another example

Let us now switch the two assignment operations.
int x = 43, y = 15; /* Two integer variables are declared

and initialized */
y = x; /* The value stored in x, i.e., 43 is fetched and
stored back in y. */
x = y + 5; /* The value 43 of y is fetched and added
to 5. The sum 48 is stored in the memory location for
x. */

For this sequence, x stores the value 48 and y the
value 43, after the two assignment statements are
executed.

Assignments with same
variables
The right side of an assignment operation may contain

multiple occurrences of the same variable.
For each such occurrence the same value stored in the

variable is substituted.
Moreover, the variable in the left side of the
assignment operator may appear in the right side too.

In that case, each occurrence in the right side refers to
the older (pre-assignment) value of the variable.

After the expression is evaluated, the value of the
variable is updated by the result of the evaluation.

Example

int x = 5; x = x + (x * x);
The value 5 stored in x is substituted for each

occurrence of x in the right side, i.e., the expression
5 + (5 * 5) is evaluated.

The result is 30 and is stored back to x.
Thus, this assignment operation causes the value of x

to change from 5 to 30.
The equality sign in the assignment statement

is not a mathematical equality, i.e., the above
statement does not refer to the equation x = x + x2

(which happens to have a single root, namely x = 0).

Floating point numbers, characters
and array locations may also be used
in assignment operations.
float a = 2.3456, b = 6.5432, c[5]; /* Declare float variables and arrays */

char d, e[4]; /* Declare character variables and arrays */
c[0] = a + b; /* c[0] is assigned 2.3456 + 6.5432, i.e., 8.8888 */
c[1] = a - c[0]; /* c[1] is assigned 2.3456 - 8.8888, i.e., -6.5432 */
c[2] = b - c[0]; /* c[2] is assigned 6.5432 - 8.8888, i.e., -2.3456 */
a = c[1] + c[2]; /* a is assigned (-6.5432) + (-2.3456), i.e., -8.8888 */
d = 'A' - 1; /* d is assigned the character ('@') one less than 'A' in the
ASCII chart */
e[0] = d + 1; /* e[0] is assigned the character next to '@', i.e., 'A' */ e[1]
= e[0] + 1; /* e[1] is assigned the character next to 'A', i.e., 'B' */ e[2] =
e[0] + 2; /* e[2] is assigned the character second next to 'A', i.e., 'C' */
e[3] = e[2] + 1; /* e[3] is assigned the character next to 'C', i.e., 'D' */

Implicit Conversion

An assignment does an implicit type conversion, if its
left side turns out to be of a different data type than
the type of the expression evaluated.

float a = 7.89, b = 3.21; int c; c = a + b;
Here the right side involves the floating point operation

7.89 + 3.21. The result is the floating point value
11.1. The assignment plans to store this result in an
integer variable.

The value 11.1 is first truncated and subsequently the
integer value 11 is stored in c.

Example
#include<stdio.h>
main()
{
float a = -7.89, b = 3;
int c;
typedef unsigned long newlong;
newlong d;
c = (int) a + b;
d=c;

printf("%d\n",c);
printf("%x\n",d);

}

Typecasting Again
float a = 7.89, b = 3.21;

int c; c = (int)(a + b);

What is the value of c?

The parentheses around the expression a + b implies that the
typecasting is to be done after the evaluation of the expression.
The following variant has a different effect:

float a = 7.89, b = 3.21; int c; c = (int)a + b;

What is the value of c now?

Assignments also return a
value.
int a, b, c; c = (a = 8) + (b = 13);
Here a is assigned the value 8 and b the

value 13. The values (8 and 13) returned
by these assignments are then added and
the sum 21 is stored in c.

The assignment of c also returns a value,
i.e., 21.

Here we do not need this value.

Assignment is right associative
For example,

a = b = c = 0;
is equivalent to a = (b = (c = 0));

Here c is first assigned the value 0. This
value is returned to assign b, i.e., b also
gets the value 0. The value returned from
this second assignment is then assigned to
a. Thus after this statement all of a, b and
c are assigned the value 0.

Examples of Expressions
53 /* constant */
-3.21 /* constant */
'a' /* constant */
x /* variable */
-x[0] /* unary negation on a variable */
x + 5 /* addition of two subexpressions */
(x + 5) /* parenthesized expression */
(x) + (((5))) /* another parenthesized expression */
y[78] / (x + 5) /* more complex expression */
y[78] / x + 5 /* another complex expression */
y / (x = 5) /* expression involving assignment */
1 + 32.5 / 'a' /* expression involving different data types */

Non-examples

5 3 /* space is not an operator and integer
constants may not contain spaces */

y *+ 5 /* *+ is not a defined operator */
x (+ 5) /* badly placed parentheses */
x = 5; /* semi-colons are not allowed in

expressions */

Operators in C
Operator Meaning Description

- unary
negation

Applicable for integers and real numbers. Does not
make enough sense for unsigned operands.

+ (binary)
addition Applicable for integers and real numbers.

-
(binary)

subtractio
n

Applicable for integers and real numbers.

*
(binary)

multiplicat
ion

Applicable for integers and real numbers.

Operators in C

/ (binary)
division

For integers division means "quotient", whereas for real
numbers division means "real division". If both the
operands are integers, the integer quotient is calculated,
whereas if (one or both) the operands are real numbers,
real division is carried out.

%
(binary)
remaind

er
Applicable only for integer operands.

Examples
Here are examples of integer arithmetic:

55 + 21 evaluates to 76.
55 - 21 evaluates to 34.
55 * 21 evaluates to 1155.
55 / 21 evaluates to 2.
55 % 21 evaluates to 13.
Here are some examples of floating point arithmetic:
55.0 + 21.0 evaluates to 76.0.
55.0 - 21.0 evaluates to 34.0.
55.0 * 21.0 evaluates to 1155.0.
55.0 / 21.0 evaluates to 2.6190476 (approximately).
55.0 % 21.0 is not defined.
Note: C does not provide a built-in exponentiation operator.

Bitwise Operators

Bitwise operations apply to unsigned integer operands
and work on each individual bit.

Bitwise operations on signed integers give results that
depend on the compiler used, and so are not
recommended in good programs.

The following table summarizes the bitwise operations.
For illustration we use two unsigned char operands a

and b. We assume that a stores the value
237 = (11101101)2 and that b stores the value
174 = (10101110)2.

Operator Meaning Example

& AND

| OR

^ EXOR

~ Complement

>> Right-shift

<< Left-shift

a = 237 1 1 1 0 1 1 0 1
b = 174 1 0 1 0 1 1 1 0

a & b is 172 1 0 1 0 1 1 0 0
a = 237 1 1 1 0 1 1 0 1
b = 174 1 0 1 0 1 1 1 0

a | b is 239 1 1 1 0 1 1 1 1
a = 237 1 1 1 0 1 1 0 1
b = 174 1 0 1 0 1 1 1 0

a ^ b is 67 0 1 0 0 0 0 1 1
a = 237 1 1 1 0 1 1 0 1
~a is 18 0 0 0 1 0 0 1 0
a = 237 1 1 1 0 1 1 0 1

a >> 2 is 59 0 1 1 1 0 1 1 0
b = 174 1 0 1 0 1 1 1 0

b << 1 is 92 0 1 0 1 1 1 0 0

Multiply by 2 (or powers of 2)
#include<stdio.h>
main()
{
int a;
int n;
scanf("%d",&a);
scanf("%d",&n);
printf("Result: %d\n",a<<n);

}

Divide by 2 (or powers of 2)
#include<stdio.h>
main()
{
int a;
int n;
scanf("%d",&a);
scanf("%d",&n);
printf("Result: %d\n",a>>n);

}

If the number is negative
Suppose a=--5, n=1
+5: 0000 0000 0000 0101

1111 1111 1111 1010
1

1111 1111 1111 1011 >> 1: 1111 1111 1111 1101

What does this represent?
0000 0000 0000 0010

1

0000 0000 0000 0011 : +3

Therefore, the result is -3 (So, is it integer division ?)

Bit Complement Operator

Consider an integer i. How do you make the last 4 bits
0?

Method 1: i = i & 0xfff0;
(requires the knowledge of the size of int)

Method 2: i = (i >> 4)<<4; (requires two shifts)
Method 3: i = i & ~0xf;
Concise Form: i &= ~0xf; (expressions like this

when the variable being assigned to and the
variable being operated on are same can be
written like this).

Extract the nth bit

#include<stdio.h>
main()
{

int i, n;
int bit;
scanf("%d",&i);
scanf("%d",&n);
bit = (i>>n)&1;
printf("The %dth bit of %d is %d\n",n,i,bit);

}

Problem

Can you use this code (method) to find out
the binary representation of an integer
value?
Write a C code and check.

Ternary Operator
Consists of two symbols: ? and :

example,
larger = (i > j) : i : j;

i and j are two test expressions.
Depending on whether i > j, larger (the variable

on the left) is assigned.
if (i > j), larger = i
else (i,e i<=j), larger = j

This is the only operator in C which takes three
operands.

Comma Operator

int i, j;
i=(j=1,j+10);
What is the result? j=11.

Operator Precedence and
Associativity
An explicitly parenthesized arithmetic (and/or logical)

expression clearly indicates the sequence of
operations to be performed on its arguments.

However, it is quite common that we do not write all
the parentheses in such expressions.

Instead, we use some rules of precedence and
associativity, that make the sequence clear.

For example, the expression
a + b * c conventionally stands for

a + (b * c)
and not for (a + b) * c

Another ambiguity

Let us look at the expression a - b - c
Now the common operand b belongs to two same

operators (subtraction).
They have the same precedence. Now we can

evaluate this as
(a - b) - c or as
a - (b - c)
Again the two expressions may evaluate to different values.
The convention is that the first interpretation is correct.

In other words, the subtraction operator is left-
associative.

Associativity and Precedence
Operator(s) Type Associativity

++ -- unary non-associative

- ~ unary right

* / % binary left

+ - binary left

<< >> binary left

& binary left

| ^ binary left

= += -= *= etc. binary right

Unary operators
Consider ++a and a++

there is a subtle difference between the two.
Recall that every assignment returns a value.
The increment (or decrement) expressions ++a and a++ are

also assignment expressions.
Both stand for "increment the value of a by 1". But

then which value of a is returned by this expression?
We have the following rules:
For a++ the older value of a is returned and then the value of

a is incremented. This is why it is called the post-increment
operation.

For ++a the value of a is first incremented and this new
(incremented) value of a is returned. This is why it is called
the pre-increment operation.

A sample code
#include<stdio.h>
main()
{
int a, s;
a=1;
printf("a++=%d\n",a++);
printf("++a=%d\n",++a);

}

Can lead to ambiguities…

#include<stdio.h>
main()
{
int a, s;
a=1;
printf(“++a=%d,a++=\n",++a,a++);
}

Conditions and
Branching

Think about mathematical definitions like the
following. Suppose we want to assign to y
the absolute value of an integer (or real
number) x. Mathematically, we can express
this idea as:

y=0 if x = 0,
y = x if x > 0,
-x if x < 0.

Fibonacci numbers

Fn= 0 if n = 0,
Fn = 1 if n = 1,
Fn = Fn-1 + Fn-2 if n >= 2.

Conditional World

If your program has to work in such a
conditional world, you need two constructs:
A way to specify conditions (like x < 0, or

n >= 2).
A way to selectively choose different blocks of

statements depending on the outcomes of the
condition checks.

Logical Conditions

Let us first look at the rendering of logical
conditions in C.

A logical condition evaluates to a Boolean
value, i.e., either "true" or "false".

For example, if the variable x stores the
value 15, then the logical condition x > 10
is true, whereas the logical condition
x > 100 is false.

Mathematical Relations
Relational operator Usage Condition is true iff

== E1 == E2 E1 and E2 evaluate to the same value

!= E1 != E2 E1 and E2 evaluate to different values

< E1 < E2 E1 evaluates to a value smaller than E2

<= E1 <= E2 E1 evaluates to a value smaller than or equal to E2

> E1 > E2 E1 evaluates to a value larger than E2

>= E1 >= E2 E1 evaluates to a value larger than or equal to E2

Examples
Let x and y be integer variables holding the

values 15 and 40 at a certain point in time.
At that time, the following truth values hold:
x == y False
x != y True
y % x == 10 True
600 < x * y False
600 <= x * y True
'B' > 'A' True
x / 0.3 == 50 False (due to floating point errors)

Booleaan Values in C
A funny thing about C is that it does not support any Boolean data type.
Instead it uses any value (integer, floating point, character, etc.) as a

Boolean value.
Any non-zero value of an expression evaluates to "true", and the zero

value evaluates to "false". In fact, C allows expressions as logical
conditions.

Example:
0 False
1 True
6 - 2 * 3 False
(6 - 2) * 3 True
0.0075 True
0e10 False
'A' True
'\0' False
x = 0 False
x = 1 True

The last two examples point out the potential danger of mistakenly
writing = in place of ==. Recall that an assignment returns a value,
which is the value that is assigned.

Logical Operators
Logical operator Syntax True if and only if

AND C1 && C2 Both C1 and C2 are true

OR C1 || C2 Either C1 or C2 or both are true

NOT !C C is false

Examples

(7*7 < 50) && (50 < 8*8) True
(7*7 < 50) && (8*8 < 50) False
(7*7 < 50) || (8*8 < 50) True
!(8*8 < 50) True
('A' > 'B') || ('a' > 'b') False
('A' > 'B') || ('A' < 'B') True
('A' < 'B') && !('a' > 'b') True

Note

Notice that here is yet another source of
logical bug. Using a single & and | in order
to denote a logical operator actually means
letting the program perform a bit-wise
operation and possibly ending up in a
logically incorrect answer

Associativity of Logical
Operators

Operator(s) Type Associativity

! Unary Right

< <= > >= Binary Left

== != Binary Left

&& Binary Left

|| Binary Left

Examples

x <= y && y <= z || a >= b is equivalent to
((x <= y) && (y <= z)) || (a >= b).

C1 && C2 && C3 is equivalent to
(C1 && C2) && C3.

a > b > c is equivalent to
(a > b) > c.

The If Statement
C Statement:

if(Condition)
Block1;

scanf("%d",&x);
if (x < 0) x = -x;
x=x+1;

The If else Statement
C Statement:
if (Condition)
{ Block 1 }
else { Block 2 }

scanf("%d",&x);
if (x >= 0) y = x;
else y = -x;
x=x+1;

The ternary statement

Consider the following special form of the if-else
statement:

if (C) v = E1; else v = E2; Here depending upon the
condition C, the variable v is assigned the value of
either the expression E1 or the expression E2. This
can be alternatively described as:

v = (C) ? E1 : E2; Here is an explicit example.
Suppose we want to compute the larger of two
numbers x and y and store the result in z. We can
write:

z = (x >= y) ? x : y;

