
CS10003:
Programming & Data Structures

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Autumn 2020

Data-types,
Variables and I/O

Integer Data Type
Integer data
type

Bit
size Minimum value Maximum value

char 8 -27=-128 27-1=127
short int 16 -215=-32768 215-1=32767
int 32 -231=-2147483648 231-1=2147483647
long int 32 -231=-2147483648 231-1=2147483647

long long int 64 -263=-
9223372036854775808

263-
1=9223372036854775807

unsigned char 8 0 28-1=255
unsigned short int 16 0 216-1=65535
unsigned int 32 0 232-1=4294967295
unsigned long int 32 0 232-1=4294967295

unsigned long long i
nt 64 0

264-
1=1844674407370955161
5

Float Data Type

Like integers, C provides representations of
real numbers and those representations
are finite.

Depending on the size of the representation,
C's real numbers have got different names.

Real data type Bit size
float 32
double 64
long double 128

The sizeof function
#include <stdio.h>
void main()
{
printf(“size of short int: %d\n”,sizeof(short
int));
printf(“size of int is %d\n”,sizeof(int));
printf(“size of long int is %d\n”,sizeof(long
int));

}

Char data type
char for representing characters.
We need a way to express our thoughts in

writing.
This has been traditionally achieved by using

an alphabet of symbols with each symbol
representing a sound or a word or some
punctuation or special mark.

The computer also needs to communicate its
findings to the user in the form of
something written.

Char data type
Since the outputs are meant for human readers, it is

advisable that the computer somehow translates its
bit-wise world to a human-readable script.

The Roman script (mistakenly also called the English
script) is a natural candidate for the representation.
The Roman alphabet consists of the lower-case letters (a to

z), the upper case letters (A to Z), the numerals (0 through
9) and some punctuation symbols (period, comma, quotes
etc.).

In addition, computer developers planned for inclusion of
some more control symbols (hash, caret, underscore etc.).
Each such symbol is called a character.

ASCII Code
In order to promote interoperability between different computers,

some standard encoding scheme is adopted for the computer
character set.

This encoding is known as ASCII (abbreviation for American
Standard Code for Information Interchange).

In this scheme each character is assigned a unique integer value
between 32 and 127.

Since eight-bit units (bytes) are very common in a computer's
internal data representation, the code of a character is
represented by an 8-bit unit.

Since an 8-bit unit can hold a total of 28=256 values and the
computer character set is much smaller than that, some values of
this 8-bit unit do not correspond to visible characters.

Printable Characters

These values are often used for representing
invisible control characters (like line feed,
alarm, tab etc.) and extended Roman
letters (inflected letters like ä, é, ç).

Some values are reserved for possible future
use.
The ASCII encoding of the printable
characters is summarized in the following
table.

Decimal Hex Binary Character Decimal Hex Binary Character

32 20 00100000 SPACE 80 50 01010000 P

33 21 00100001 ! 81 51 01010001 Q

34 22 00100010 " 82 52 01010010 R

35 23 00100011 # 83 53 01010011 S

36 24 00100100 $ 84 54 01010100 T

37 25 00100101 % 85 55 01010101 U

38 26 00100110 & 86 56 01010110 V

39 27 00100111 ' 87 57 01010111 W

40 28 00101000 (88 58 01011000 X

41 29 00101001) 89 59 01011001 Y

42 2a 00101010 * 90 5a 01011010 Z

43 2b 00101011 + 91 5b 01011011 [

44 2c 00101100 , 92 5c 01011100 \

45 2d 00101101 - 93 5d 01011101]

46 2e 00101110 . 94 5e 01011110 ^

47 2f 00101111 / 95 5f 01011111 _

48 30 00110000 0 96 60 01100000 `

49 31 00110001 1 97 61 01100001 a

50 32 00110010 2 98 62 01100010 b

51 33 00110011 3 99 63 01100011 c

52 34 00110100 4 100 64 01100100 d

53 35 00110101 5 101 65 01100101 e

54 36 00110110 6 102 66 01100110 f

55 37 00110111 7 103 67 01100111 g

56 38 00111000 8 104 68 01101000 h

57 39 00111001 9 105 69 01101001 i

58 3a 00111010 : 106 6a 01101010 j

59 3b 00111011 ; 107 6b 01101011 k

60 3c 00111100 < 108 6c 01101100 l

61 3d 00111101 = 109 6d 01101101 m

62 3e 00111110 > 110 6e 01101110 n

63 3f 00111111 ? 111 6f 01101111 o

64 40 01000000 @ 112 70 01110000 p

65 41 01000001 A 113 71 01110001 q

66 42 01000010 B 114 72 01110010 r

67 43 01000011 C 115 73 01110011 s

68 44 01000100 D 116 74 01110100 t

69 45 01000101 E 117 75 01110101 u

70 46 01000110 F 118 76 01110110 v

71 47 01000111 G 119 77 01110111 w

72 48 01001000 H 120 78 01111000 x

73 49 01001001 I 121 79 01111001 y

74 4a 01001010 J 122 7a 01111010 z

75 4b 01001011 K 123 7b 01111011 {

76 4c 01001100 L 124 7c 01111100 |

77 4d 01001101 M 125 7d 01111101 }

78 4e 01001110 N 126 7e 01111110 ~

79 4f 01001111 O 127 7f 01111111 DELETE

Qualifiers

Qualifiers add more data types.
typically size or sign.
size: short or long
sign: signed or unsigned

signed short int, unsigned short int, signed
int, signed long int, long double, long int

signed char and unsigned char

A Comment
A char data type is also an integer data type.
If you want to interpret a char value as a character,

you see the character it represents. If you want to
view it as an integer, you see the ASCII value of that
character.

For example, the upper case A has an ASCII value of
65.
An eight-bit value representing the character A automatically

represents the integer 65,
because to the computer A is recognized by its ASCII code,

not by its shape, geometry or sound!

Character assignment Example

#include <stdio.h>
void main()
{

char c;
c = ‘#’;
printf(“This is a hash symbol: %c\n”,c);

}

ASCII Code example
#include <stdio.h>
void main()
{

int code;
char symbol;
printf(“Input an ASCII code (0 to 127): “);
scanf(“%d”,&code);
symbol=code;
printf(“The symbol corresponding to ASCII %d is
%c\n”,code,symbol);

}

Static and Global variables
Often you shall see declarations like:

static int
These variables retain their content in

memory as long as the program executes.
Their usage will be more clear when we

study ‘functions’
Global variables are visible from other
function calls.

Pointer Data Type
Pointers are addresses in memory.
In order that the user can directly manipulate memory addresses, C

provides an abstraction of addresses.
The memory location where a data item resides can be accessed by

a pointer to that particular data type. C uses the special character
* to declare pointer data types.

A pointer to a double data is of data type double *.
A pointer to an unsigned long int data is of type unsigned long int *.
A character pointer has the data type char *.

We will study pointers more elaborately later in this course.

Constants

Defining a data type is not enough.

You need to assign the variables and work
with specific values of various data types.

Integer Constants
An integer constant is a non-empty sequence of decimal numbers preceded

optionally by a sign (+ or -).
However, the common practice of using commas to separate groups of three (or

five) digits is not allowed in C.
Nor are spaces or any character other than numerals allowed.
Here are some valid integer constants:

332
-3002
+15
-00001020304

And here are some examples that C compilers do not accept:
3 332
2,334
- 456
2-34
12ab56cd

Hexadecimal values
You can also express an integer in base 16, i.e., an

integer in the hexadecimal (abbreviated hex)
notation.

In that case you must write either 0x or 0X before the
integer.

Hexadecimal representation requires 16 digits
0,1,...,15.

In order to resolve ambiguities the digits
10,11,12,13,14,15 are respectively denoted by
a,b,c,d,e,f (or by A,B,C,D,E,F).

Here are some valid hexadecimal integer constants:
0x12ab56cd -0X123456 0xABCD1234 +0XaBCd12

Real Constants

Input Output for short and long
int
#include<stdio.h>
void main()
{
short int shorti;
long int longi;
printf(“Input short int: “);
scanf(“%hd”,&shorti);
printf(“%hd\n”,shorti);
printf(“Inputt long int: “);
scanf(“%ld”,&longi);
printf(“%ld\n”,longi);
printf(“shorti = %hd and longi=%ld”,shorti,longi);
}

A Sample Run:
Input short int: 20
Input long int: 2000000
shorti= 20 and longi= 2000000

The typedef statement
This statement can be used to define new data

types.
For example:

typedef unsigned long ulong;
ulong is a new data type equivalent to unsigned long

It can be used as any other data type as follows;
ulong u;

(declares u to be of the type ulong)

The size of the new data type can also be found in
bytes using sizeof(ulong)

Examples

int m, n, armadillo;
int platypus;
float hi, goodMorning;
unsigned char _u_the_charcoal;

Constants of different Integer
types
Since different integer data types use

different amounts of memory and
represent different ranges of integers, it is
often convenient to declare the intended
data type explicitly.

Constants of different Integer
types

Suffix Data type
L (or l) long

LL (or ll) long long
U (or u) unsigned

UL (or ul) unsigned long
ULL (or

ull)
unsigned long

long

Examples

4000000000UL
123U
0x7FFFFFFFl
0x123456789abcdef0ULL

Character Constants
Character constants are single printable

symbols enclosed within single quotes.
Here are some examples: 'A' '7' '@' ' '

Special Characters
Constant Character ASCII value

'\0' Null 0
'\b' Backspace 8
'\t' Tab 9
'\n' New line 13

'\'' Single
Quote 39

'\\' Backslash 92

Try this!

#include<stdio.h>
main()
{
int i;
for(i=0;i<10000;i++)
prinf(“%c”,’\a’)

}

Formats
%c The character format specifier.
%d The integer format specifier.
%i The integer format specifier (same as %d).
%f The floating-point format specifier.
%e The scientific notation format specifier.
%E The scientific notation format specifier.
%g Uses %f or %e, whichever result is shorter.
%G Uses %f or %E, whichever result is shorter.
%o The unsigned octal format specifier.
%s The string format specifier.
%u The unsigned integer format specifier.
%x The unsigned hexadecimal format specifier.
%X The unsigned hexadecimal format specifier.
%p Displays the corresponding argument that is a
pointer.
%n Records the number of characters written so
far.
%% Outputs a percent sign.

Characters can be represented by
numbers

Since characters are identified with integers
in the range -127 to 128 (or in the range 0
to 255), you can use integer constants in
the prescribed range to denote characters.

The particular sequence '\xuv' (synonymous
with 0xuv) lets you write a character in the
hex notation.

For example, '\x2b' is the integer 43 in
decimal notation and stands for the
character '+'.

Pointer constants
It is dangerous to work with constant addresses.
You may anyway use an integer as a constant address.
But doing that lets the compiler issue you a warning message.
Finally, when you run the program and try to access memory at

a constant address, you are highly likely to encounter a
frustrating mishap known as "Segmentation fault".

It occurs when the memory is accessed at an illegal address
(beyond what you are supposed to).

However there is a pointer constant that is used widely. This is
called NULL. A NULL pointer points to nowhere.

Variables
“The only constant thing is change”
Variables help to abstract this change.
Teacher = XYZ ;

here Teacher is a variable
XYZ is one instance of the variable, and is a constant

A variable is an entity that has a value and is known to
the program by a name,

A variable definition associates a memory location with
the variable name.

At one time it can have only one value associated with
it.

Declaring variables

For declaring one or more variables of a
given data type do the following:

First write the data type of the variable.
Then put a space (or any other white

character).
Then write your comma-separated list of

variable names.
At the end put a semi-colon. Eg, int a, b;

Promotion and typecasting of
variables
int i;
float f;
i = 5;
f = i;
The last statement assigns i to f. Since i is an integer

and f is float, the conversion is automatic.
Promotion: This type of conversion, when the variable

of lower type is converted to a higher type is called
promotion.

Integral Promotion

int i;
char c;
c = ‘a’;
i = c;
The value present in the character variable ‘c’, i.e the

ASCII code of the character ‘a’ is assigned to the
integer ‘i’.

But i is typically represented using 2 bytes and c with 1
byte. Here comes the concept of sign extension.

Sign extension

Conversion to a signed integer from character data
type:
lower 8 bits will be the character’s value.
higher 8 bits will be filled with 0 or 1, depending on the

Maximum Significant Bit (MSB) of the character.
(Note: MSB is used to indicate the sign of a signed number)

This is called sign extension.

Sign extension takes place only if the variable of the
higher type is signed.

Truncation

f=7.5
i = f
This results in the discarding of .5. The value

7 is assigned to i.

Forcible Conversion

int i, j;
float f;
i=12; j=5;
f = i/j;
printf(“%f\n”,f);
The output is 2.0. This is because both i

and j are integers, an integer division
will take place.

Typecasting
In order to have a floating division, either i or j should be

float.
We can change say i, from integer to float by typecasting,

using:
(float) i

Thus we have to change the division line to:
f = (float) i/j;

The general syntax is:
(type) variable_name;

Typecasting can also be used to convert a higher data
type to a lower type, for example: (int) f

