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Introduction



The Evolution of Electronic Computing

1980 1990 2005 2020

Computation 
became
Free !!
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Home Computer @ 2004: Predicted versus Real

Predicted in 1954

Reality



Storage has become free!!

Magnetic Tape Drive

5 MB Hard Disk [1956]

128 GB Pen Drive



Communication



Interfaces
A Bluetooth Laser 
Virtual KeyboardFrom punch cards

to paper tapes
to keyboards



Architecture

Typical system
architecture
for a desktop PC



CPU (Central Processing Unit)
• Computations take place to perform a designated task.

• Large number of registers to temporarily store data and programs 
(instructions).

• Functional units (circuitry) to carry out arithmetic and logic 
operations

• Retrieves instructions from the memory, interprets (decodes) them, and 
performs the requested operation
• Fetch Decode Execute cycle

• CPU is also referred to as the processor
• Computers may have multiple processors
• Modern processors are multi-core (multiple processors in one chip)
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Main Memory

• Uses semiconductor technology
• Allows direct access

• Memory sizes in the range of 256 MegaBytes (MB) to 8 
GigaBytes (GB) are typical today.

• Some measures to be remembered
• 1 K = 210 (= 1024)
• 1 M = 220 (= one million approx.)
• 1 G = 230 (= one billion approx.)



Memory: Address and Values



I/O and Peripherals
• Input Device

• Keyboard, Mouse, Scanner, Digital Camera
• Output Device

• Monitor, Printer
• Storage Peripherals

• Magnetic Disks: hard disk, floppy disk
• Allows direct (semi-random) access

• Optical Disks: CDROM, CD-RW, DVD
• Allows direct (semi-random) access

• Flash Memory: pen drives
• Allows direct access

• Magnetic Tape: DAT
• Only sequential access



How does a computer work?

• Stored program concept.
• Main difference from a calculator.

• What is a program?
• Set of instructions for carrying out a specific task.

• Where are programs stored?
• In secondary memory, when first created.
• Brought into main memory, during execution.



Number System – The Basics

• We are accustomed to using the so-called decimal number 
system.
• Ten digits ::  0,1,2,3,4,5,6,7,8,9
• Every digit position has a weight which is a power of 10.

• Examples:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 10-1 +  7 x 10-2



Computer works with Binary Numbers

• Binary number system:
• Two digits ::  0,1
• Every digit position has a weight which is a power of 2.

• Examples:
101 (Binary) =  1 x 22 +  0 x 21 +  1 x 20 = 5 (Decimal)
11001 (Binary)

=  1 x 24 +  1 x 23 +  0 x 22 +  0 x 21 +  1 x 20

=  25 (Decimal)



Bits and Bytes
• Bit

• A single binary digit (0 or 1).

• Nibble
• A collection of four bits (say, 0110).

• Byte
• A collection of eight bits (say, 01000111).

• Word
• Depends on the computer.
• Typically 4 or 8 bytes (that is, 32 or 64 bits).



Number System (Contd.)

• A k-bit decimal number
• Can express unsigned integers in the range

• 0  to  10k – 1
• For k=3, from 0 to 999.

• A k-bit binary number
• Can express unsigned integers in the range

• 0  to  2k – 1
• For k=8, from 0 to 255.
• For k=10, from 0 to 1023.



Classification of Software

Two categories:

1. Application Software
• Used to solve a particular problem.
• Editor, financial accounting, weather forecasting, etc.

2. System Software
• Helps in running other programs.
• Compiler, operating system, etc.



Computer Languages
• Machine Language

• Expressed in binary and directly understood by the computer.
• Not portable; varies from one machine type to another.

• Program written for one type of machine will not run on another 
type of machine.

• Difficult to use in writing programs.

• Assembly Language
• Mnemonic form of machine language.
• Easier to use as compared to machine language.

• For example, use “ADD” instead of “10110100”.
• Not portable (like machine language) and requires a translator 

program called assembler.



Computer Languages (Contd.)

• Assembly language is difficult to use in writing programs.
• Requires many instructions to solve a problem.

• Example: Find the average of three numbers.
MOV A,X ;  A = X
ADD A,Y ;  A = A + Y
ADD A,Z ;  A = A + Z
DIV A,3 ;  A = A / 3
MOV RES,A ;  RES = A

In C,

RES = (X + Y + Z) / 3

Assembler
Assembly 
language 
program

Machine 
language 
program



High-Level Language
• Machine language and assembly language are called low-

level languages.
• They are closer to the machine.
• Difficult to use.

• High-level languages are easier to use.
• They are closer to the programmer.
• Examples: Fortran, Cobol, C, C++, Java.
• Requires an elaborate process of translation.

• Using a software called compiler.
• They are portable across platforms.



From HLL to executable

Compiler LinkerObject
Code(s)

HLL
Program
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Operating Systems
• Makes the computer easy to use.

• Basically the computer is very difficult to use.
• Understands only machine language.

• Categories of operating systems:
• Single user
• Multi user: Time sharing, Multitasking, Real time

• Popular operating systems:
Windows 10:   single-user multitasking
 Unix:  multi-user
 Linux: a free version of Unix 

• Question:
 How multiple users can work on the same computer?



Some Terminologies

• Algorithm / Flowchart
• A step-by-step procedure for solving a particular problem.
• Independent of the programming language.

• Program
• A translation of the algorithm/flowchart into a form that can 

be processed by a computer.
• Typically written in a high-level language like C, C++, Java, 

Python, etc.



Programming and Software 

• Computer needs to be programmed to do such tasks

• Programming is the process of writing instructions in a 
language that can be understood by the computer so that a 
desired task can be performed by it

• Program: sequence of instructions to do a task, computer 
processes the instructions sequentially one after the other

• Software: programs for doing tasks on computers



Three steps in writing programs

Step 1: Write program in a high-level language
(in your case, C)

Step 2: Compile the program using a C compiler

Step 3: Run the program
(as the computer to execute it)



First C Program: first.c
 Type in the following C program exactly as it is in the file, and 

then save it

/* The first C program */

#include  <stdio.h>
int main( )
{

printf(“Welcome to IITKGP\n”);
printf(“\tYou are doing PDS Theory.”);
return 0;

}



Structure of a C program

• A collection of functions (we will see what they are later)

• Exactly one special function named main must be present. 
Program always starts from there

• Each function has statements (instructions) for declaration, 
assignment, condition check, looping etc.

• Statements are executed one by one



Making a Mistake

 Remove the ) (right bracket) after main 

/* The first C program */

#include  <stdio.h>
int main(
{
printf(“Welcome to IITKGP\n”);
printf(“\tYou are doing PDS Theory.”);
return 0;

}

!!  ... To Bug is Human, To Debug Divine ...  !!



Configuring and Executing the Program
• Save the file
• Compile the file
• You will see an error printed out:

first.c:4 : error: Syntax error ……..

• Go back and correct the error

• Save the file again
• Compile the file again
• Should show no errors this time

• Run the file and verify that Welcome to IITKGP is printed in a 
line and in the next line some (tab) space is left and You are
doing PDS Theory. is printed.



#include <stdio.h>
int main()
{

int num ;
printf(“Enter How many Students: ”);
scanf("%d", &num);
printf(“No. of students is %d.\n”, num);
return 0;

}

Output:
Enter How Many Students: 180
No. of students is 180.

Reading values from keyboard



The C Character and Keyword Set
• The C language alphabet

• Uppercase letters ‘A’ to ‘Z’
• Lowercase letters ‘a’ to ‘z’
• Digits ‘0’ to ‘9’
• Certain special characters:

C program should not contain anything else!

• Used Keywords by the C language, cannot be used as variable 
names
• Examples:

int, float, char, double, main, if, else, for, while, do, struct, 
union, typedef, enum, void, return, signed, unsigned, case, 
break, sizeof, …

• There are others, see textbook …

!       #       %       ^       &       *       (       )  

- _       +        =       ~       [        ]       \

|       ;        :       ‘         “        {        }       ,      

.        <       >      /         ?       blank



Computer Program is Everywhere!
• Determining if a given integer is a prime number
• A Palindrome recognizer
• Airline Reservation System
• Journey Route Determination
• Telephone pole placement
• Patriot Missile Control
• Autonomous vehicles
• Finger-print recognition
• Chess Player
• Speech Recognition
• Language Recognition
• Discovering New Laws
• Automatic drug discovery
• …
• …



Increasing Program Size!



Thank You!
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