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Q1. [ Concept Learning ] 6 marks

Consider the following set of 4 training examples to train a robot janitor to predict whether or not an
office contains a recycling bin.

Designation Floor Department Office Size Recycle Bin
Faculty Second CS Medium Yes
Faculty Second EE Medium Yes
PostDoc Second CS Small No
Faculty First CS Medium Yes

Here, each of the four attributes can take two domain values as mentioned in the table: Designation =
Faculty / PostDoc; Floor = First / Second; Department = CS / EE; and Office Size = Small / Medium.

Consider the space H of conjunctive hypotheses, which, for each attribute, indicates by either ‘?’ (any
value acceptable), or a specific value (e.g., Second for Floor), or ‘φ ’ (no value acceptable).

Let a version space (a subset of consistent hypotheses in H) be represented by an S set (specific
boundary, at the top) and a G set (general boundary, at the bottom). Answer the following.

(a) Calculate the total size (cardinality) of the possible hypothesis space. (2)
Solution:
Each attribute can take the mention values as well as ‘?’. Additionally, there is one more hy-
pothesis which takes nothing into consideration (all ‘φ ’). So, the total size (cardinality) of the
possible hypothesis space = (2+1)× (2+1)× (2+1)× (2+1)+1 = 82.

(b) Give a sequence of S and G boundary sets computed by CANDIDATE-ELIMINATION algo-
rithm when the examples are taken in the same order as presented in the above table. (4)
Solution:

S0 = ⟨ φ , φ , φ , φ ⟩
G0 = ⟨ ?, ?, ?, ? ⟩

S1 = ⟨ Faculty, Second, CS, Medium ⟩
G1 = ⟨ ?, ?, ?, ? ⟩ = G0

S2 = ⟨ Faculty, Second, ?, Medium ⟩
G2 = ⟨ ?, ?, ?, ? ⟩ = G1

S3 = ⟨ Faculty, Second, ?, Medium ⟩ = S2

G3 = ⟨ Faculty, ?, ?, ? ⟩ ⟨ ?, ?, ?, Medium ⟩

S4 = ⟨ Faculty, ?, ?, Medium ⟩
G4 = ⟨ Faculty, ?, ?, ? ⟩ ⟨ ?, ?, ?, Medium ⟩ = G3

(G1
4) (G2

4)
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Q2. [ Decision Tree Learning ] 6 marks

Right is a dataset of the 2201 passengers
and crew aboard the RMS Titanic, which
disastrously sunk on April 15th, 1912. For
every combination of three attribute vari-
ables (Class, Gender, Age), we have the
counts of how many people survived and
did not. Here, we are primarily interested
in predicting the outcome variable, Sur-
vival (S) (No / Yes), from the input at-
tributes, Class (C), Gender (G) and Age
(A) by building a decision tree.

Attributes Survival Count of
Class Gender Age No Yes Passengers

1st Male Child 0 5 5
1st Male Adult 118 57 175
1st Female Child 0 1 1
1st Female Adult 4 140 144
2nd Male Child 35 24 59
2nd Male Adult 1211 281 1492
2nd Female Child 17 27 44
2nd Female Adult 105 176 281

Total: 1490 711 2201

Which attribute should you choose at the root of your decision tree? Show the detailed calculations
leveraging the entropy-based information gain measures obtained for each attribute you choose. (6)
Solution:

(Survival)
Class No Yes Total

1st 122 203 325
2nd 1368 508 1876

(Survival)
Gender No Yes Total

Male 1364 367 1721
Female 126 344 470

(Survival)
Age No Yes Total

Child 52 57 109
Adult 1438 654 2092

For Class:

Gain[C] = Entropy(S)−
[( 325

2201

)
·Entropy

(
S |C = 1st

)
+
(1876

2201

)
·Entropy

(
S |C = 2nd

)]
= Entropy(S)−

[ 325
2201

·
(
−
(203

325
)
· log2

(203
325

)
−
(122

325
)
· log2

(122
325

))
+

1876
2201

·
(
−
( 508

1876
)
· log2

( 508
1876

)
−
(1368

1876
)
· log2

(1368
1876

))]
= Entropy(S)−0.595518

For Gender:

Gain[G] = Entropy(S)−
[(1721

2201

)
·Entropy

(
S | G = Male

)
+
( 470

2201

)
·Entropy

(
S | G = Female

)]
= Entropy(S)−

[1721
2201

·
(
−
( 367

1721
)
· log2

( 367
1721

)
−
(1364

1721
)
· log2

(1364
1721

))
+

470
2201

·
(
−
(344

470
)
· log2

(344
470

)
−
(126

470
)
· log2

(126
470

))]
= Entropy(S)−0.530438

For Age:

Gain[A] = Entropy(S)−
[( 109

2201

)
·Entropy

(
S | A =Child

)
+
(2092

2201

)
·Entropy

(
S | A = Adult

)]
= Entropy(S)−

[ 109
2201

·
(
−
( 57

109
)
· log2

( 57
109

)
−
( 52

109
)
· log2

( 52
109

))
+

2092
2201

·
(
−
( 654

2092
)
· log2

( 654
2092

)
−
(1438

2092
)
· log2

(1438
2092

))]
= Entropy(S)−0.624692

Since Entropy(S) =− 711
2201 log2

( 711
2201

)
− 1490

2201 log2
(1490

2201

)
> 0,

Gender attribute will have highest Information Gain and will be choosen as root of the decision tree.
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Q3. [ Bayesian Learning ] 7 marks

Consider the dataset shown to the right. It has 4 fea-
tures X = (x1,x2,x3,x4) and the outcome can take any
of 3 labels, y ∈ {+1,0,−1}. Assume that, the prob-
abilities, Pr(X | y) and Pr(y), are both Bernoulli dis-
tributions. Answer the questions that follow under the
Naive Bayes assumption.

x1 x2 x3 x4 y

1 1 0 1 +1
0 1 1 0 +1
1 0 1 1 0
0 1 1 1 0
0 1 0 0 −1
1 0 0 1 −1
0 0 1 1 −1

(a) Compute the Maximum Likelihood Estimates for Pr(xi = 1 | y), for all i ∈ {1,2,3,4} and for all
y ∈ {+1,0,−1}. (3)
Solution:

Pr(xi = 1 | y) y =+1 y = 0 y =−1

x1 = 1 1
2

1
2

1
3

x2 = 1 1 1
2

1
3

Pr(xi = 1 | y) y =+1 y = 0 y =−1

x3 = 1 1
2 1 1

3
x4 = 1 1

2 1 2
3

(b) Compute the Maximum Likelihood Estimates for the prior probabilities, Pr(y =+1), Pr(y = 0),
and Pr(y =−1). (1)
Solution:

Pr(y=+1) =

2
7

, Pr(y= 0) =

2
7

, Pr(y=−1) =

3
7

.

(c) Use the values computed in the above two parts to classify the data point (x1 = 1, x2 = 1, x3 =
1, x4 = 1) as belonging to class +1, 0 or −1. (3)
Solution:
According to Naive Bayes assumption, attributes are independent given y, thus we can write the
conditional joint probability as,

Pr(x1 = 1,x2 = 1,x3 = 1,x4 = 1) = Pr(x1 = 1,x2 = 1,x3 = 1,x4 = 1 | y) ·Pr(y)

= Pr(y) ·
4

∏
i=1

Pr(xi = 1 | y).

We calculate the probability given different values of y and pick the one with highest probability:

Pr(y =+1) ·
4

∏
i=1

Pr(xi = 1 | y =+1) =
2
7
·
(1

2
×1× 1

2
× 1

2

)
=

1
28

Pr(y = 0) ·
4

∏
i=1

Pr(xi = 1 | y = 0) =
2
7
·
(1

2
× 1

2
×1×1

)
=

1
14

Pr(y =−1) ·
4

∏
i=1

Pr(xi = 1 | y =−1) =
3
7
·
(1

3
× 1

3
× 1

3
× 2

3

)
=

2
189

Since y = 0 yields the largest value, we classify the given data point as ŷ = 0.
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Q4. [ Bayesian Network ] 5 marks

Consider the Bayesian network with Boolean variables shown to the right.

(a) Answer whether the following statements are True / False providing
proper justification using D-separation method. (4)

(i) X31 ⊥⊥ X33
∣∣ X32,

i.e., “X31 is conditionally independent of X33 given X32”.

(ii) X21 ⊥⊥ X33
∣∣ {X11, X12},

i.e., “X21 is conditionally independent of X33 given X11 and X12”.

Solution:

(i) False
Both the possible paths (shown below) from X31 to X33 are active:

◦ X31← X21→ X32 (observed) ← X22→ X33 (all three overlapping triples are active triples)
◦ X31← X22→ X33 (this is an active triple)

(ii) True
Both the possible paths (shown below) from X21 to X33 are inactive:

◦ X21→ X32← X22→ X33 (blocking collider at X32).
◦ X21→ X31← X22→ X33 (blocking collider at X31).

(b) Write the joint probability Pr(X11,X12,X13,X21,X22,X31,X32,X33) factored according to the Bayes
network and conditional probabilities. (1)
Solution:

Pr(X11,X12,X13,X21,X22,X31,X32,X33) = Pr(X11) ·Pr(X12) ·Pr(X13) ·
Pr(X21 | X11,X12) ·Pr(X22 | X13) ·
Pr(X31 | X21,X22) ·Pr(X32 | X21,X22) ·Pr(X33 | X22)
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Q5. [ Instance-based Learning ] 6 marks

Consider the 2-dimensional data set shown in the following table.

(x,y) (1,1) (2,1) (2,2) (3,0) (3,2) (3,3) (3.4,1) (4,3) (5,2)
Class − + − + + + − − −

Here, x and y can take continuous values and Class has two labels (+ and −). Answer the following.

(a) Classify the data point (x,y) = (3,1) according to its 1-, 3-, 5-, and 9- nearest neighbours (using
majority voting). Briefly explain your results. (2)
Solution:
◦ 1-nearest neighbour: Class of (3,1) will be −[

since the nearest data point, (3.4,1), has ‘−’ label
]

◦ 3-nearest neighbour: Class of (3,1) will be +[
since any 3 nearest data points, i.e. ⟨ (2,1),(3,0),(3.4,1) ⟩ or ⟨ (3,0),(3,2),(3.4,1) ⟩ or
⟨ (2,1),(3,2),(3.4,1) ⟩, have two ‘+’ and one ‘−’ labels

]
◦ 5-nearest neighbour: Class of (3,1) will be +[

since 5 nearest data points, ⟨ (2,1),(2,2),(3,0),(3,2),(3.4,1) ⟩, have three ‘+’ and two ‘−’
labels

]
◦ 9-nearest neighbour: Class of (3,1) will be −[

since 9 nearest data points include all points, we have four ‘+’ and five ‘−’ labels
]

(b) Again classify the same data point (x,y) = (3,1) according to its 1-, 3-, 5-, and 9- nearest
neighbours (using distance-weighted voting). Briefly explain your results.
Note: In distance-weighted scheme, the weights are inversely proportional to the Euclidean
distances between two data points. (4)
Solution:
◦ 1-nearest neighbour: Class of (3,1) will be −[

since the nearest data point, (3.4,1), has ‘−’ label
]

◦ 3-nearest neighbour: Class of (3,1) will be −[
since any 3 nearest data points, i.e. ⟨ (2,1),(3,0),(3.4,1) ⟩ or ⟨ (3,0),(3,2),(3.4,1) ⟩ or
⟨ (2,1),(3,2),(3.4,1) ⟩, have two ‘+’ and one ‘−’ labels, the combined distance-weight with
two ‘+’ labeled points (which is, 1

1 +
1
1 = 2) is less than the distance-weight with the ‘−’

labeled point (which is, 1
0.4 = 2.5)

]
◦ 5-nearest neighbour: Class of (3,1) will be −[

since 5 nearest data points, ⟨ (2,1),(2,2),(3,0),(3,2),(3.4,1) ⟩, have three ‘+’ and two ‘−’
labels, the combined distance-weight with three ‘+’ labeled points (which is, 1

1 +
1
1 +

1
1 = 3)

is less than the combined distance-weight with two ‘−’ labeled points (which is, 1√
2
+ 1

0.4 ≈
3.21)

]
◦ 9-nearest neighbour: Class of (3,1) will be −[

since 9 nearest data points include all points, we have four ‘+’ and five ‘−’ labels; the
combined distance-weight with four ‘+’ labeled points (which is, 1

1 +
1
1 +

1
1 +

1
2 = 3.5) is less

than the combined distance-weight with five ‘−’ labeled points (which is, 1
2 +

1√
2
+ 1

0.4 +
1√
5
+

1√
5
≈ 4.6)

]
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Q6. [ Linear Classification – Perceptron Learning ] 6 marks
The table shown to the right is a list of sample points in the 2-
dimensional space (R2). Suppose that, we run the perceptron
learning algorithm on these sample points (as per the mentioned
order). We record the total number of times each point partici-
pates in a stochastic gradient descent step because it is misclas-
sified (refer to the rightmost column), throughout the run of the
algorithm. Answer the following.

x1 x2 y # Misclassified
−3 2 +1 0
−1 1 +1 0
−1 −1 −1 2
2 2 −1 1
1 −1 −1 0

(a) Suppose that the learning rate is η = 1 and the initial weight vector is w(0) = [−3,2,1], where
the last component is the weight (w0) for the threshold / bias term (x0 = 1). What is the equation
of the separating line found by the algorithm, in terms of the features x1 and x2? (4)
Solution:
At each iteration, the weights are updated by picking a misclassified point and applying the

update rule. The learned weights are w = w(0) +η
n
∑

i=1
αi · yi ·Xi, where the variable αi is the

number of times the ith point is misclassified.

Recall that, we augment each sample point Xi with default x0 = 1 for the bias, i.e. Xi =[
x1,x2,x0

](i). Since the weight update happens only for the misclassified points, thus we have:

w = [−3,2,1] + 2 ·−1 · [−1,−1,1] + 1 ·−1 · [2,2,1] = [−3,2,−2].

Therefore, the equation of the separating line is: −3x1 +2x2−2 = 0.
(Alternatively, −3x2 +2x1−2 = 0)

(b) Will our result (that is, execution and outcome of the perceptron learning algorithm) differ if we
add an additional training point (2,−2) having the label ‘+1’? Explain. (2)
Solution:
The data would no longer be linearly separable, so the perceptron algorithm would not terminate.
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Q7. [ Logistic Regression and Gradients ] 12 marks

For a logistic regression model f having two output class lebels, y ∈ {0,1}, let the logistic loss be
defined as: L(x,y;w) =−y log

(
f (x;w)

)
− (1− y) log

(
1− f (x;w)

)
, where f has a range of [0,1].

In this problem, we want to pick a suitable logistic function to approximate f for the loss. Suppose,
you are unsure between chosing a sigmoid function, g(x;w), or a shifted tanh function, h(x;w), where:

g(x;w) =
1

1+ e−wT .x
and h(x;w) =

1
2

tanh(wT .x)+
1
2

with tanh(x) =
ex− e−x

ex + e−x

In particular, answer the following.

(a) Before picking f , is it possible to compute the gradient of the logistic loss function (i.e., differ-
entiate L with respect to w)? If yes, derive what is ∂L(x,y;w)

∂w . If no, justify. (2)
Solution:
Yes! We use the chain rule:

∂L(x,y;w)

∂w
= −y · 1

f (x;w)
· ∂ f (x;w)

∂w
+(1− y) · 1

1− f (x;w)
· ∂ f (x;w)

∂w

=
( f (x;w)− y

f (x;w) ·
(
1− f (x;w)

)) · ∂ f (x;w)

∂w

(b) Next, if you wish to substitute g or h for f , then first derive what are ∂g(x;w)
∂w and ∂h(x;w)

∂w . (4)
Solution:

∂g(x;w)

∂w
= −

(
1+ e−wT .x)−2 · ∂

∂w
(
1+ e−wT .x)

=
x · e−wT .x(

1+ e−wT .x
)2 (this is a valid answer)

= x · 1(
1+ e−wT .x

) · e−wT .x(
1+ e−wT .x

)
= x ·g(x;w) ·

(
1−g(x;w)

)
and

∂h(x;w)

∂w
=

1
2
· ∂ tanh(wT .x)

∂w

=
1
2
· ∂

∂w

(ewT .x− e−wT .x

ewT .x + e−wT .x

)
=

1
2

[
x ·

(
ewT .x + e−wT .x

)
·
(
ewT .x + e−wT .x

)
−
(
ewT .x− e−wT .x

)
·
(
ewT .x− e−wT .x

)(
ewT .x + e−wT .x

)2

]
=

1
2
· x ·

[
1−

(ewT .x− e−wT .x

ewT .x + e−wT .x

)2]
(this is a valid answer)

=
1
2
· x ·

(
1− tanh2(wT .x)

)
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(c) Revisit Part (a) again to prove that the gradient of the logistic loss function by substituting g for
f and then h for f , respectively, can be derived as follows:

∂L(x,y;w)

w

∣∣∣
g
= x ·

(
g(x;w)− y

)
and

∂L(x,y;w)

w

∣∣∣
h
= 2 · x ·

(
h(x;w)− y

)
You can use the results that you have derived in Part (b). (4)
Solution:
∂L(x,y;w)

∂w

∣∣∣
g

=
( g(x;w)− y

g(x;w) ·
(
1−g(x;w)

)) · ∂g(x;w)

∂w

=
( g(x;w)− y

g(x;w) ·
(
1−g(x;w)

)) · x ·g(x;w) ·
(
1−g(x;w)

)
= x ·

(
g(x;w)− y

)
[Proved]

and

∂L(x,y;w)

∂w

∣∣∣
h

=
( h(x;w)− y

h(x;w) ·
(
1−h(x;w)

)) · ∂h(x;w)

∂w

=
( h(x;w)− y

1
2

(
tanh(wT .x)+1

)
·
(
1− 1

2

(
tanh(wT .x)+1

))) · 1
2
· x ·

(
1− tanh2(wT .x)

)
=

( h(x;w)− y(
tanh(wT .x)+1

)
· 1

2 ·
(
1− tanh(wT .x)

)) · 1
2
· x ·

(
1− tanh2(wT .x)

)
= 2 · x ·

(
h(x;w)− y

)
[Proved]

(d) Assume that, you are able to format ∂L(x,y;w)
∂w as c · x ·

(
f (x;w)− y

)
in the previous part, where

c is a constant and f is the corresponding sigmoid function g or tanh function h. Explain why
this loss function’s gradient is very convenient for backpropagation when you use such logistic
regression models within your artificial neural networks. (2)
Solution:
This gradient is convenient because we compute all components of it during the forward pass
(evaluation of L(x,y;w)). The gradient just uses x (our data), y (our label), and f (x;w) which we
have to compute anyways when we compute the loss. Thus there is no extra computation when
backpropagating other than putting the pieces together.
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Q8. [ Neural Networks and Backpropagation ] 12 marks

(a) Assume that, you are given with two types of Neural Network activation functions, namely:

◦ Linear function: y = w0 + ∑
i≥1

wixi

◦ Hard threshold function: y =

{
1, if w0 + ∑

i≥1
wixi ≥ 0,

0, otherwise.
Which of the following functions can be exactly represented by a neural network with one
hidden layer which uses linear and/or hard threshold activation functions?

(i) Polynomials of degree 1
(ii) Polynomials of degree 2

(iii) Hinge loss function, h(x) = max(1− x,0)
(iv) Piecewise constant functions (in 1-dimension)

For each of the above cases, justify your answer. (4)
Solution:

(i) Polynomials of degree 1: Yes.

To realize y = A.x+b, we can use linear threshold activation function directly in its hidden
layer node, making all its input weights wi = ai for all i≥ 1, and w0 = b.

(ii) Polynomials of degree 2: No.

To realize y = A.x2 +B.x+ c, we are unable to obtain A.x2 as a linear combination of x.

(iii) Hinge loss function, h(x) = max(1− x,0): No.

In order to realize hinge loss function, we need to combine linear function with threshold
(constant) function. However, we may need two hidden layer nodes in series to obtain this,
because one hidden layer obtains either linear of threshold function but not both together.

(iv) Piecewise constant functions (in 1-dimension): Yes.

Suppose, the given function contains k piecewise constant values, namely, c1,c2, · · · ,ck.
Every piecewise constant, c j (1 ≤ j ≤ k) can get realized (in parallel) from a separate
threshold function node, h j, inside the hidden layer, where for every j we have:

w( j)
0 +w( j).x≥ 0 =⇒ x≥−

w( j)
0

w( j)
(weight framed according to piecewise boundaries of x)

Thus, to match the every c j, the corresponding hidden layer node outputs h j = 1.
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(b) Below is a neural network with inputs x1 and x2. The internal nodes are computed below. All
variables take scalar values. Answer the following.

h1 = w11x1 +w12x2 r1 = max(h1,0)

h2 = w21x1 +w22x2 r2 = max(h2,0)

h3 = w31x1 +w32x2 r3 = max(h3,0)

s1 = max(r2,r3) z = y1 + y2

y1 =
er1

er1 + es1
y2 =

es1

er1 + es1

(i) Given x1 = 1,x2 = −2,w11 = 6,w12 = 2,w21 = 4,w22 = 7,w31 = 5,w32 = 1, compute the
values of all internal nodes, h1,h2,h3,r1,r2,r3,s1,y1,y2,z, during forward propagation. (2)

(ii) During backpropagation step, analytically compute the following four gradients: ∂y1
∂ s1

, ∂y1
∂ r1

,
∂ z
∂ s1

, and ∂ s1
∂x2

. The answer should be an expression of any of the nodes in the network
(x1,x2,h1,h2, h3,r1,r2,r3,s1,y1,y2,z) or weights (w11,w12,w21,w22,w31,w32). Show your
calculations in details. (6)

Solution:
(i)

h1 h2 h3 r1 r2 r3 s1 y1 y2 z
2 −10 3 2 0 3 3 1

1+e
e

1+e 1

(ii) Note that, y2 = 1− y1 and similarly y1 = 1− y2. Therefore, ∂y2
∂ s1

=− ∂y1
∂ s1

.

∂y1

∂ s1
=

∂

∂ s1

( 1
1+ es1−r1

)
= −1 · es1−r1(

1+ es1−r1
)2

= − er1

er1 + es1
· es1

er1 + es1
= −y1 ·

(
1− y1

)
= −y1 · y2

∂y1

∂ r1
=

∂

∂ r1

( 1
1+ es1−r1

)
=

es1−r1(
1+ es1−r1

)2

=
er1

er1 + es1
· es1

er1 + es1
= y1 ·

(
1− y1

)
= y1 · y2

∂ z
∂ s1

=
∂ z
∂y1
· ∂y1

∂ s1
+

∂ z
∂y2
· ∂y2

∂ s1
= 1 · (−y1 · y2)+1 · (y1 · y2) = 0

∂ s1

∂x2
=


∂ s1
∂ r2
· ∂ r2

∂h2
· ∂h2

∂x2
= 1 ·1 ·w22 = w22, if r2 ≥ r3 and h2 > 0

∂ s1
∂ r3
· ∂ r3

∂h3
· ∂h3

∂x2
= 1 ·1 ·w32 = w32, if r2 < r3 and h3 > 0

0, otherwise (h2,h3 ≤ 0)

— The question paper ends here. —
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