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Q1. [ Gradient Descent ] 10 marks

Let φ(x) : R→ Rd , w ∈ Rd . Consider the following objective function (a.k.a. loss function).

Loss(x,y;w) =


1−2(w ·φ(x))y, if (w ·φ(x))y≤ 0(

1−2(w ·φ(x))y
)2
, if 0 < (w ·φ(x))y≤ 1

0, if (w ·φ(x))y > 1
where y ∈ R.

(a) Compute the gradient ∇wLoss(x,y;w). (2)
Solution:
We apply the rules to compute the gradient for each case separately, leading to the following
piece-wise function for the gradient.

∇wLoss(x,y;w) =


−2φ(x)y, if (w ·φ(x))y≤ 0

−4
(
1−2(w ·φ(x))y

)
φ(x)y, if 0 < (w ·φ(x))y≤ 1

0, if (w ·φ(x))y > 1
where y ∈ R.

(b) Let the Gradient Descent update rule for some function TrainLoss(w) : Rd → R is given as,
w ← w− η∇wTrainLoss(w), where η is the step size. Let d = 2 and φ(x) = [1,x]. Con-
sider the following loss function, TrainLoss(w) = 1

2

(
Loss(x1,y1;w)+ Loss(x2,y2;w)

)
. Com-

pute ∇wTrainLoss(w) for the values of x1 =−2, y1 = 1, x2 =−1, y2 =−1, w =
[
0, 1

2

]
. (3)

Solution:
To calculate ∇wLoss(x1,y1;w), first note that φ(x1) = [1,−2]. Since

(
w · φ(x1)

)
y1 = −1, we

consider Case 1 of the gradient expression equation (derived in Part (a)). Thus, we have,

∇wLoss(x1,y1;w) =−2φ(x1)y1 = [−2,4]

To calculate ∇wLoss(x2,y2;w), similarly note that φ(x2) = [1,−1]. Since
(
w ·φ(x2)

)
y2 =

1
2 , we

consider Case 2 of the gradient expression equation (derived in Part (a)). Thus, we have,

∇wLoss(x2,y2;w) =−4
(
1−2(w ·φ(x2))y2

)
φ(x2)y2 = [0,0]

Combining the terms, we get,

∇wTrainLoss(w) =
1
2
(
∇wLoss(x1,y1;w)+∇wLoss(x2,y2;w)

)
=

1
2
(
[−2,4]+ [0,0]

)
=
[
−1,2

]
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(c) Perform two iterations of Gradient Descent to minimize the objective function, TrainLoss(w) =
1
2

(
Loss(x1,y1;w)+Loss(x2,y2;w)

)
with initial values for x1,y1,x2,y2 as given in Part (b) above.

Show the calculations. Use initialization w(0) =
[
0, 1

2

]
and step size η = 1

2 and derive what are
the weight parameters, w(1) and w(2), after each of these two iterations. (5)
Solution:
Note that, we have already computed ∇wTrainLoss(w) at the initialization point w(0) in Part (b).

w(1) ← w(0)−η∇wTrainLoss(w) at w(0)

=
[
0,

1
2

]
−
(1

2

)[
−1,2

]
=

[1
2
,−1

2

]
Now we need to compute ∇wLoss(x1,y1;w) and ∇wLoss(x2,y2;w) at the new iteration (updated)
weight w(1). We repeat the process that we did for Part (b) by applying the piece-wise defined
gradient (derived in Part (a)) to the two points, this time setting w← w(1).
Since

(
w(1) ·φ(x1)

)
y1 =

3
2 > 1, we consider Case 3 of the gradient expression equation (derived

in Part (a)). Thus, we have,

∇wLoss(x1,y1;w) =
[
0,0
]

Since
(
w(1) ·φ(x2)

)
y2 =−1≤ 0, we consider Case 1 of the gradient expression equation (derived

in Part (a)). Thus, we have,

∇wLoss(x2,y2;w) =−2φ(x2)y2 = [2,−2]

Combining the terms, we get,

∇wTrainLoss(w) at w(1) =
1
2
(
∇wLoss(x1,y1;w)+∇wLoss(x2,y2;w)

)
=

1
2

([
0,0
]
+[2,−2]

)
=
[
1,−1

]
Hence,

w(2) ← w(1)−η∇wTrainLoss(w) at w(1)

=
[1

2
,−1

2

]
−
(1

2

)[
1,−1

]
=

[
0,0
]
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Q2. [ Learning Theory: VC-Dimension ] 13 marks

(a) Decision trees can split on data with binary features (X = {0,1}d) or continuous features (X =
Rd). Assume that the nodes of a continuous decision tree have splitting rules that threshold the
value of a single feature. Note that for continuous decision trees, multiple splits can be made on
the same feature. For binary decision trees, only a single split can be made on a feature.
Consider the following two hypothesis classes and answer the questions asked below.

◦ H1 = {h : h is a decision tree for data with only binary features}
◦ H2 = {h : h is a decision tree for data with only continuous features}

(i) What is the VC-dimension of H1? Analytically derive/explain. (3)
(ii) What is the VC-dimension of H2? Analytically derive/explain. (3)

(iii) Are both of these H1 and H2 PAC learnable? Explain your answer. (2)

Solution:

(i) The VC-dimension is 2d .

With d binary attributes, there are 2d possible input values. The set of size 2d with each
possible input can be shattered by splitting on every feature to isolate each example to its
own leaf. Then, any possible labeling can be realized as we can choose the label assigned
to each leaf. This is sufficient for the set to be shattered.
There is no set of size 2d + 1, thus 2d is the largest size set that can be shattered and
VCDim(H1) = 2d .

Note: To be specific, there is no set of size 2d +1 possible.
On contrary, the following reasoning is actually wrong and should get only partial credit:
Any larger set will have two examples with the same attribute values. The tree must then
always predict the same label for these examples so the set cannot be shattered. As a set of
size 2d can be shattered but not a set of size 2d +1, the VC dimension is 2d .

(ii) The VC-dimension is ∞ (infinite).

The VC-dimension is infinite if for any size m, there is a set C that is shattered by H2.
Consider a set C of size m, where all points have a unique value for attribute x0 and all
other attributes are 0. (This effectively reduces the problem into a single dimension R).
Then, repeatedly choosing nodes that create splits in between each of the points’ attribute
values of x0 isolates each example to its own leaf, so H2 shatters C. This holds for a set C
for arbitrary size m, so VCDim(H2) = ∞.
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(iii) Any hypothesis class is PAC learnable if and only if it has a finite VC-dimension. There-
fore, we can conclude that H1 is PAC-learnable but H2 is not.

(b) Let the VC-dimensions of two hypothesis classes, H1 and H2, be VCDim(H1)= d1 and VCDim(H2)=
d2. Prove that, the VC-Dimension of the union of these hypothesis, i.e. H = H1∪H2, will be at
most (d1 +d2 +1), i.e. VCDim(H)≤VCDim(H1)+VCDim(H2)+1. (5)
Solution:
By the definition of growth function on any N points for a hypothesis class H , we know that,

mH (N)≤
dVC

∑
i=0

(N
i

)
, where VCDim(H ) = dVC is the VC-dimension of H .

Let the growth functions on any N points of the hypothesis classes, H1, H2 and H, are denoted
by mH1(N), mH2(N) and mH(N), respectively. Since we have H = H1∪H2, we can write

mH(N)≤ mH1(N)+mH2(N).

Taking N = d1 +d2 +2, we can proceed as follows:

mH(N)≤ mH1(N)+mH2(N) ≤
d1

∑
i=0

(
N
i

)
+

d2

∑
i=0

(
N
i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d2

∑
i=0

(
d1 +d2 +2

i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d2

∑
i=0

(
d1 +d2 +2

d1 +d2 +2− i

)
=

d1

∑
i=0

(
d1 +d2 +2

i

)
+

d1+d2+2

∑
i=d1+2

(
d1 +d2 +2

i

)

=
d1+d2+2

∑
i=0

(
d1 +d2 +2

i

)
−
(

d1 +d2 +2
d1 +1

)
= 2d1+d2+2−

(
d1 +d2 +2

d1 +1

)
< 2d1+d2+2 = 2N

=⇒ mH(d1 +d2 +2)< 2d1+d2+2 =⇒ (d1 +d2 +2) is a break point of H

=⇒ VCDim(H)≤ d1 +d2 +1

Therefore, VCDim(H)≤VCDim(H1)+VCDim(H2)+1. [Proved]
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Q3. [ Kernels and Support Vector Machines ] 10 marks

(a) One of the most commonly used kernels in Support Vector Machines (SVM) is the Gaussian
Radial Basis Function (RBF) kernel: k(a,b) = exp

(
− ||a−b||2

2σ

)
. Suppose we have three points,

z1, z2, and x. z1 is geometrically very close to x, and z2 is geometrically far away from x. What
are the values of k(z1,x) and k(z2,x)? Choose the correct option with suitable justification: (2)

(i) k(z1,x) will be close to 1 and k(z2,x) will be close to 0.
(ii) k(z1,x) will be close to 0 and k(z2,x) will be close to 1.

(iii) k(z1,x) will be close to c1, c1� 1 and k(z2,x) will be close to c2, c2� 0 (c1,c2 ∈ R).
(iv) k(z1,x) will be close to c1, c1� 0 and k(z2,x) will be close to c2, c2� 1 (c1,c2 ∈ R).

Solution: (i)
RBF kernel generates a ‘bump’ around the center x. For points z1 close to the center of the
bump, k(z1,x) will be close to 1, for points away from the center of the bump k(z2,x) will be
close to 0.

(b) Suppose You are training a RBF soft-margin SVM classifier with the following parameters: ξ

(slack penalty) and σ (where σ2 is the variance of the RBF kernel) and found that it is overfitting.
How should you tweak the parameters (only ξ and σ ) to reduce overfitting? (2)
Solution:
Reduce ξ and / or increase σ

(c) Multiple kernels can be combined to produce new kernels. For example, K(x,z) = K1(x,z)+
K2(x,z) is a valid kernel combination. Suppose, the kernels K1 and K2 have the associated
feature transformations Φ1 and Φ2, respectively. Derive what will be the corresponding feature
transform for the following kernel combination: K(x,z) = α.K1(x,z)+β .K2(x,z), where α,β ∈
R+ are positive constants. Here, derive Φ(x) as a feature vector with Φ1(x) and Φ2(x). (2)
Solution:
Note that,

K(x,z) = Φ(x).Φ(z) =
[√

α.Φ1(x),
√

β .Φ2(x)
]
.
[√

α.Φ1(z),
√

β .Φ2(z)
]T

= α.Φ1(x).Φ1(z)+β .Φ2(x).Φ2(z) = α.K1(x,z)+β .K2(x,z)

Therefore, Φ(x) =
[√

α.Φ1(x),
√

β .Φ2(x)
]
.
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(d) A kernel function K(x,z) measures the similarity between two instances x and z in a transformed
space. For a feature transform x→ Φ(x) the kernel function is K(x,z) = Φ(x).Φ(z). Consider
the 2-dimensional input vectors x = (x1,x2). Derive what will be the corresponding feature
transform for each of the kernel function listed below.

(i) For K(x,z) = 1+ x.z, derive Φ(x) as a feature vector with x1 and x2. (2)
Solution:
Note that,

K(x,z) = Φ(x).Φ(z) = [1,x1,x2].[1,z1,z2]
T = 1+ x1.z1 + x2.z2 = 1+ x.z

Therefore, Φ(x) = [1,x1,x2].

(ii) For K(x,z) = (1+ x.z)2, derive Φ(x) as a feature vector with x1 and x2. (2)
Solution:
Note that,

K(x,z) = Φ(x).Φ(z)

= [1,x2
1,x

2
2,
√

2x1x2,
√

2x1,
√

2x2].[1,z2
1,z

2
2,
√

2z1z2,
√

2z1,
√

2z2]
T

= 1+ x2
1z2

1 + x2
2z2

2 +2x1x2z1z2 +2x1z1 +2x2z2

= (1+ x1.z1 + x2.z2)
2 = (1+ x.z)2

Therefore, Φ(x) = [1,x2
1,x

2
2,
√

2x1x2,
√

2x1,
√

2x2].
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Q4. [ Classifier Evaluation ] 7 marks

You wrote a spam filtering program by yourself and now you are testing your program on 100 emails
among which you already knew that 20% emails are spams. However, upon running your program on
those 100 email corpus, it predicted 1

2 of the ‘spam’ emails as non-spam. Answer the following:

(a) In order to push the Accuracy ≥ 75%, how many ‘non-spam’ emails at most (maximum) you
can afford to mis-predict as spams? (2)
Solution:
Suppose, the spam filtering program can afford to mis-predict at most M ‘non-spam’ emails
as spams. As per the problem, among 100 total test emails, 20 are actual spams, and hence
T P = FN = 10. So, we have, FP = M and T N = 80−M.

Accuracy =
T P+T N

T P+T N +FP+FN
=

10+(80−M)

100
≥ 3

4
=⇒ M ≤ 15

So, this spam filtering program can afford to mis-predict at most 15 ‘non-spam’ emails as spams.

(b) With the derived setup in Part (a), i.e., when your Accuracy is exactly 75%, present the confusion
matrix (in tabular form). (2)
Solution:

(Actual) (Actual)
Confusion Matrix Spam Emails Non-Spam Emails

(Predicted) Spam Emails 10 (TP) 15 (FP)
(Predicted) Non-Spam Emails 10 (FN) 65 (TN)

Alternative Approach:

(Actual) (Actual)
Confusion Matrix Non-Spam Emails Spam Emails

(Predicted) Non-Spam Emails 65 (TP) 10 (FP)
(Predicted) Spam Emails 15 (FN) 10 (TN)

(c) As per your confusion matrix that you presented in Part (b), calculate Precision, Recall and
F1-score of your spam filtering program. (3)
Solution:

Precision =
T P

T P+FP
=

10
10+15

= 0.4

Recall =
T P

T P+FN
=

10
10+10

= 0.5

F1-score = 2× Precision×Recall
Precision+Recall

= 2× 0.4×0.5
0.4+0.5

≈ 0.22

Alternative Approach:

Precision =
T P

T P+FP
=

65
65+10

≈ 0.87

Recall =
T P

T P+FN
=

65
65+15

≈ 0.81

F1-score = 2× Precision×Recall
Precision+Recall

≈ 2× 0.87×0.81
0.87+0.81

≈ 0.84
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Q5. [ Unsupervised Learning: K-Means Clustering ] 12 marks

Assume the following dataset (consisting of (x,y)-coordinates of six points in a 2-dimensional plane)
is given: (0,0), (0,1), (1,0), (1,3), (2,2), (2,3). You need to run the K-Means algorithm with K = 2
and K = 3 to cluster these data points. Assume that, Euclidean distance is used as the distance function
to compute distances between centroids and objects (points) in the dataset. Answer the following.

(a) During the initialization, assume the centroids of the K clusters are greedily taken to be the
first K points given in the dataset. Execute iteratively the K-Means clustering algorithm (till
termination) and show the stepwise outputs in detail (for cluster sizess, K = 2 and K = 3). In
particular, indicate the set of points that come under each cluster after every iteration and also
compute their centroid to be used for the next iteration. Indicate when and how you decided to
terminate/stop. You need to answer for K = 2 and K = 3 cases separately. (4 × 2)
Solution:

◦ For K = 2 (two cluster formation):
Iterations Output Cluster-1 Cluster-2

0 Elements − −
(init.) Centroid (0,0) (0,1)

1 Elements (0,0), (1,0) (0,1), (1,3), (2,2), (2,3)
(cont.) Centroid (0.5,0) (1.25,2.25)

2 Elements (0,0), (0,1), (1,0) (1,3), (2,2), (2,3)
(cont.) Centroid (0.33,0.33) (1.67,2.67)

3 Elements (0,0), (0,1), (1,0) (1,3), (2,2), (2,3)
(stop) Centroid (0.33,0.33) (1.67,2.67)

◦ For K = 3 (three cluster formation):
Iterations Output Cluster-1 Cluster-2 Cluster-3

0 Elements − − −
(init.) Centroid (0,0) (0,1) (1,0)

1 Elements (0,0) (0,1), (1,3), (2,2), (2,3) (1,0)
(cont.) Centroid (0,0) (1.25,2.25) (1,0)

2 Elements (0,0), (0,1) (1,3), (2,2), (2,3) (1,0)
(cont.) Centroid (0,0.5) (1.67,2.67) (1,0)

3 Elements (0,0), (0,1) (1,3), (2,2), (2,3) (1,0)
(stop) Centroid (0,0.5) (1.67,2.67) (1,0)

— Page 8 of 17 —



◦ Decision to stop / terminate:
In both cases, we stop when the elements inside the clusters remain unchanged across itera-
tions.

(b) Upon termination, compute the average silhouette coefficient (SC) of the overall clustering only
for the two cluster case (i.e. with your formed clusters for K = 2). (4)
Note: For your convenience, pairwise distances between points are given in the following table.

Pairwise Data Points Pi = (x,y)
Distance P1 = (0,0) P2 = (0,1) P3 = (1,0) P4 = (1,3) P5 = (2,2) P6 = (2,3)

P1 = (0,0) 0.000
P2 = (0,1) 1.000 0.000
P3 = (1,0) 1.000 1.414 0.000
P4 = (1,3) 3.162 2.236 3.000 0.000
P5 = (2,2) 2.828 2.236 2.236 1.414 0.00
P6 = (2,3) 3.606 2.828 3.162 1.000 1.000 0.00

Solution:
The silhouette coefficient (SC) for each of the points are computed as:

P1 (0,0) : SC = 1− a
b
= 1−

(1+1
2

)(3.162+2.828+3.606
3

) = 0.687

P2 (0,1) : SC = 1− a
b
= 1−

(1+1.414
2

)(2.236+2.236+2.828
3

) = 0.504

P3 (1,0) : SC = 1− a
b
= 1−

(1+1.414
2

)(3+2.236+3.162
3

) = 0.569

P4 (1,3) : SC = 1− a
b
= 1−

(1.414+1
2

)(3.162+2.236+3
3

) = 0.569

P5 (2,2) : SC = 1− a
b
= 1−

(1.414+1
2

)(2.828+2.236+2.236
3

) = 0.504

P6 (2,3) : SC = 1− a
b
= 1−

(1+1
2

)(3.606+2.828+3.162
3

) = 0.687

Cluster-1 :
(
{P1,P2,P3}

)
Average-SC =

0.687+0.504+0.569
3

= 0.587

Cluster-2 :
(
{P4,P5,P6}

)
Average-SC =

0.569+0.504+0.687
3

= 0.587

Overall : Average-SC =
0.587+0.587

2
= 0.587
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Q6. [ Ensemble Learning: Boosting ] 8 marks

In this problem, we study how boosting algorithm performs on a very simple classification problem.
We are given with seven training points (Pi) in a 2-dimensional plane ((x,y)-valued) positioned as
Pi = (i, i), for all 1 ≤ i ≤ 7 (i ∈ N), and their corresponding 2-class (+/−) labels are given as +, +,
+, −, −, −, +, respectively. We shall use decision stumps as our weak learner / hypothesis. Decision
stump classifier chooses a constant value c and classifies all points where x≥ c as one class and other
points where x < c as the other class (or vice versa). Answer the following.

(a) What is the initial weight assigned to each data point? (1)
Solution:

Since Weight(Pi) are equal for all Pi and
7
∑

i=1
Weight(Pi) = 1,

therefore we get, Weight(Pi) =
1
7 , ∀i ∈ [1,7].

(b) How many different decision stumps are possible for the data points given? (2)
Solution:
(7 separators / stumps) × (2 different class organizations for each)

= 14 different decision stumps are possible.
Alternative Approach:
(7 separators / stumps) × (2 different class organizations for each) × (2 dimensions)

= 28 different decision stumps are possible.
(though, this is not exactly correct as per the problem statement given, which mentions that the decision
stumps are vertical lines having the form x = c – however, full marks has been given for this too!)

(c) Let us chose one such decision stump as follows: x ≥ 3.5 region is classified as ‘−’ zone and
x < 3.5 region is classified as ‘+’ zone. What will be weights of all the data points after boosting
is performed? Present your approach and calculations in details. (4)
Solution:

εt =
1
7

and αt =
1
2

ln
(1− 1

7
1
7

)
=

1
2

ln6 = ln(
√

6)

Also, normalization factor, Z = 2
√

εt(1− εt) = 2
√

1
7 ×

6
7 = 2

√
6

7 .

So, for correctly classified data-points (Pi where i∈ [1,6]), the weight will decrease and become:

Weight(Pi) =
εt .e−αt

Z
=

1
12

, ∀i (1≤ i≤ 6)

So, for wrongly classified data-point (P7), the weight will increase and become:

Weight(P7) =
εt .eαt

Z
=

1
2

(d) Can we perfectly classify all the training examples given in this problem by only applying boost-
ing algorithm (AdaBoost)? Justify your claim. (1)
Solution:
No! The dataset given in this problem is not linearly separable.
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Q7. [ Principal Component Analysis ] 6 marks

You are provided with a dataset containing study-hours in a day and cgpa obtained for five students in
(hours,cgpa) format as: (7,7), (9,8), (10,9), (5,7) and (4,4). You want to reduce this dataset into
one dimension. Calculate the first principal component. Show your calculations in details. (6)

Solution:

The mean of the given data points is:
(7+9+10+5+4

5
7+8+9+7+4

5

)
= (7,7).

The covariance matix can be constructed as:

CoVar(x,x) =Var(x) =

[
(7−7)2 +(9−7)2 +(10−7)2 +(5−7)2 +(4−7)2]

5
=

26
5

CoVar(x,y) =CoVar(y,x) =

[
(7−7)× (7−7)+(9−7)× (8−7)+(10−7)× (9−7)+(5−7)× (7−7)+(4−7)× (4−7)

]
5

=
17
5

CoVar(y,y) =Var(y) =

[
(7−7)2 +(8−7)2 +(9−7)2 +(7−7)2 +(4−7)2]

4
=

14
5

∴ CoVar =
[

CoVar(x,x) CoVar(x,y)
CoVar(y,x) CoVar(y,y)

]
=

[ 26
5

17
5

17
5

14
5

]
.

To compute eigenvalues, we make
∣∣CoVar−λ I

∣∣= 0, which gives:(26
5
−λ

)
·
(14

5
−λ

)
− 289

25
= 0 =⇒ λ

2−8λ +3= 0 =⇒ λ = 4±
√

13 = 7.61 or 0.39

The corresponding eigenvectors with respect to the eigenvalues are computed as,[ 26
5

17
5

17
5

14
5

]
.

[
x
y

]
= 4±

√
13.
[

x
y

]
=⇒

[
x
y

]
=

[
6±5
√

13
17
1

]
=

[
1.41

1

]
or
[
−0.71

1

]

The principal component is the eigenvector corresponding to the highest eigenvalue (4+
√

13), which
is calculated as:

[6+5
√

13
17 ,1

]T
=
[
1.41,1

]T .

Alternative Approach:

Since the mean of the given data points, X =


7 7
9 8

10 9
5 7
4 4

 is (7,7), we can center the given points with

respect to mean as, X̂ =


0 0
2 1
3 2
−2 0
−3 −3

.

Now, X̂T .X̂ =

[
26 17
17 14

]
.

(Divide by 5 if you want the sample covariance matrix, but we do not care about the magnitude here.)

Its eigenvectors are
[6±5

√
13

17 ,1
]T for eigenvalues (20±5

√
13). However,

[6+5
√

13
17 ,1

]T eigenvector is
chosen to be the principal component (as this corresponds to the highest eigenvalue).
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Q8. [ Hidden Markov Model ] 8 marks

Suppose, you live a very simple life and have only two emotional states, ANGRY and HAPPY. Some
days you are ANGRY and some days you remain HAPPY. However, you hide your emotional state
and others can only observe this from whether you SMILE, FROWN, LAUGH or YELL.
Suppose, you start on Day-1 at a
HAPPY state and there is one tran-
sition per day. So, your emotional
model (states and transitions with
probabilities) and the probabilities of
the observations at every state are
given in the figure (right).

0.2

HAPPY

Pr(SMILE) = 0.5

Pr(FROWN) = 0.1

Pr(LAUGH) = 0.2

Pr(YELL) = 0.2

ANGRY

Pr(SMILE) = 0.1

Pr(FROWN) = 0.5

Pr(LAUGH) = 0.2

Pr(YELL) = 0.2

0.8 0.8

0.2

Let Q(t) and O(t) denote the state and observations at Day-t, respectively. Answer the following.

(a) Calculate: Pr[Q(2) = HAPPY ] =? (1)
Solution:
If Q(1) = HAPPY (i.e. you start from HAPPY state), then on Day-2, you can reach to HAPPY
state by direct transition having 0.8 probability value.
Hence, Pr[Q(2) = HAPPY ] = 0.8.

(b) Calculate: Pr[O(2) = FROWN] =? (2)
Solution:
O(2) = FROWN can occur in Day-2 by either by staying in HAPPY state or by transiting to
ANGRY state.
Hence, Pr[O(2) = FROWN] = 0.8×0.1+0.2×0.5 = 0.18.

(c) Calculate: Pr[Q(2) = HAPPY | O(2) = FROWN] =? (2)
Solution:

Pr[Q(2) = HAPPY | O(2) = FROWN]

=
Pr[O(2) = FROWN | Q(2) = HAPPY ] ·Pr[Q(2) = HAPPY ]

Pr[O(2) = FROWN]

=
0.1×0.8

0.18
≈ 0.444
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(d) Calculate: Pr[O(100) = Y ELL] =? (2)
Solution:

Pr[O(100) = Y ELL]

= Pr[O(100) = Y ELL | Q(100) = HAPPY ] ·Pr[Q(100) = HAPPY ]

+ Pr[O(100) = Y ELL | Q(100) = ANGRY ]×Pr[Q(100) = ANGRY ]

= 0.2×Pr[Q(100) = HAPPY ]+0.2×Pr[Q(100) = ANGRY ]

= 0.2×
(
Pr[Q(100) = HAPPY ]+Pr[Q(100) = ANGRY ]

)
= 0.2×1 = 0.2

(e) Assume O(1)=FROWN,O(2)=FROWN,O(3)=FROWN,O(4)=FROWN,O(5)=FROWN,
what is the most likely sequence of states? Just write the state sequence (no need to elaborate). (1)
Solution:
HAPPY, ANGRY, ANGRY, ANGRY, ANGRY

Q9. [ Bayesian Networks ] 8 marks
A smell of Sulphur (S) can be caused either
by rotten Eggs (E) or as a sign of the doom
brought by the Mayan Apocalypse (M). The
Mayan Apocalypse also causes the oceans to
Boil (B). The Bayesian network and correspond-
ing conditional probability tables for this situa-
tion are shown on right. Calculate the following.

E −→ S ←− M −→ B

Pr(E) = 0.4

Pr(M) = 0.1

Pr(B |M) = 1.0

Pr(B | ¬M) = 0.1

Pr(S | E,M) = 1.0

Pr(S | E,¬M) = 0.8

Pr(S | ¬E,M) = 0.3

Pr(S | ¬E,¬M) = 0.1

(a) What is the joint probability when none of these four events (E, S, M or B) occur? (1.5)
Solution:
By expanding the joint according to the chain rule of conditional probability:

Pr(¬E,¬S,¬M,¬B) = Pr(¬E) ·Pr(¬M) ·Pr(¬S | ¬E,¬M) ·Pr(¬B | ¬M)

= (1−0.4)× (1−0.1)× (1−0.1)× (1−0.1) = 0.4374

(d) What is the probability that rotten eggs are present, given that Mayan Apocalypse is occurring? (1.5)
Solution:
Here, we have E ⊥⊥M (E is independent of M), which can be inferred from the Bayes’ net.

Pr(E |M) = Pr(E) = 0.4
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(c) What is the probability that the oceans boil? (1.5)
Solution:
By marginalizing out E according to the law of total probability:

Pr(B) = Pr(B |M) ·Pr(M)+Pr(B | ¬M) ·Pr(¬M)

= 1.0×0.1+0.1× (1−0.1) = 0.19

(d) What is the probability that Mayan Apocalypse is occurring, given that the oceans are boiling? (1.5)
Solution:
By the definition of conditional probability:

Pr(M | B) =
Pr(B |M) ·Pr(M)

Pr(B)
=

1.0×0.1
0.19

≈ 0.5263

(e) What is the probability that Mayan Apocalypse is occurring, given that there is a smell of sul-
phur, the oceans are boiling, and there are rotten eggs? (2)
Solution:
By Bayes’ probability rule:

Pr(M | S,B,E) =
Pr(M,S,B,E)

Pr(S,B,E)
=

Pr(M,S,B,E)
Pr(M,S,B,E)+Pr(¬M,S,B,E)

=
Pr(E) ·Pr(M) ·Pr(S | E,M) ·Pr(B |M)

Pr(E) ·Pr(M) ·Pr(S | E,M) ·Pr(B |M)+Pr(E) ·Pr(¬M) ·Pr(S | E,¬M) ·Pr(B | ¬M)

=
0.4×0.1×1.0×1.0

0.4×0.1×1.0×1.0+0.4×0.9×0.8×0.1
≈ 0.5814
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Q10. [ Expectation-Maximization (EM) Algorithm ] 10 marks
Consider again the Bayesian Network shown in Q9 (re-drawn on the
right). You must train this network from partly observed data, using
EM algorithm and given K = 6 training examples shown on the right
where only one example contains an unobserved value (marked with
?), namely, s4. You will be asked to simulate a few steps of EM al-
gorithm by hand. Notation-wise, ek, sk, mk, and bk indicate the values
of E, S, M and B, respectively, as seen in the kth example (row). For
example, e1 = 1, s1 = 0, m1 = 1, and b1 = 1.

Answer the following.

E −→ S ←− M −→ B

K E S M B
k = 1 1 0 1 1
k = 2 0 1 1 1
k = 3 1 1 1 1
k = 4 1 ? 0 0
k = 5 0 0 0 1
k = 6 1 1 0 1

(a) Given that all variables are Boolean, how many basic parameters need to be estimated for the
given Bayes Network? Write down the list of these parameters.
For example, one parameter will be θ(s | 10), which stands for Pr(S | E,¬M). (1)
Solution:
We need to estimate 8 parameters, which are given as follows:

θ(e) = Pr(E)

θ(m) = Pr(M)

θ(b | 1) = Pr(B |M)

θ(b | 0) = Pr(B | ¬M)

θ(s | 11) = Pr(S | E,M)

θ(s | 10) = Pr(S | E,¬M)

θ(s | 01) = Pr(S | ¬E,M)

θ(s | 00) = Pr(S | ¬E,¬M)

(b) Simulate the first E-step of the EM algorithm. Before we start, we initialize all the basic pa-
rameters (which you identified in Part (a)) as 0.6, and then proceed to execute the E-step. What
expectation values will get calculated in this E-step? Calculate: E(s4 = 1 | e4,m4,b4;θ).
Note that, only one example (k = 4) contains an unobserved variable (s4 =?), but e4 = 1 and
m4 = b4 = 0. (2.5)
Solution:

E(s4 = 1 | e4,m4,b4;θ)

=
Pr(s4 = 1,e4,m4,b4 | θ)

Pr(s4 = 1,e4,m4,b4 | θ)+Pr(s4 = 0,e4,m4,b4 | θ)

=
θ(s4 = 1 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)

θ(s4 = 1 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)+θ(s4 = 0 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)

=
0.6×0.4×0.6×0.4
1×0.4×0.6×0.4

= 0.6
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(c) Next, simulate the first M-step of the EM algorithm. What will be the estimated values of all the
model parameters (which you identified in Part (a)) that we obtain in this M-step? (4)
Solution:
8 parameters will get the updated values as follows:

θ(e) = Pr(E) =
#{E = 1}

#K
=

4
6
≈ 0.67

θ(m) = Pr(M) =
#{M = 1}

#K
=

3
6

= 0.5

θ(b | 1) = Pr(B |M) =
#{B = 1,M = 1}

#{M = 1}
=

3
3

= 1.0

θ(b | 0) = Pr(B | ¬M) =
#{B = 1,M = 0}

#{M = 0}
=

2
3
≈ 0.67

θ(s | 11) = Pr(S | E,M) =
#{E = 1,M = 1} ·E[S = 1]

#{E = 1,M = 1}
=

1×1.0+1×0.0
2

= 0.5

θ(s | 10) = Pr(S | E,¬M) =
#{E = 1,M = 0} ·E[S = 1]

#{E = 1,M = 0}
=

1×0.6+1×1.0
2

= 0.8

θ(s | 01) = Pr(S | ¬E,M) =
#{E = 0,M = 1} ·E[S = 1]

#{E = 0,M = 1}
=

1×1.0
1

= 1.0

θ(s | 00) = Pr(S | ¬E,¬M) =
#{E = 0,M = 0} ·E[S = 1]

#{E = 0,M = 0}
=

1×0.0
1

= 0.0

(d) Lastly, simulate (again) the second E-step of the EM algorithm. What expectation values will
get calculated in this E-step? Calculate: E(s4 = 1 | e4,m4,b4;θ). (2.5)
Solution:

E(s4 = 1 | e4,m4,b4;θ)

=
Pr(s4 = 1,e4,m4,b4 | θ)

Pr(s4 = 1,e4,m4,b4 | θ)+Pr(s4 = 0,e4,m4,b4 | θ)

=
θ(s4 = 1 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)

θ(s4 = 1 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)+θ(s4 = 0 | e4,m4) ·θ(b4 | m4) ·θ(e4) ·θ(m4)

=
0.8×0.33×0.67×0.5
1×0.33×0.67×0.5

= 0.8
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Q11. [ Reinforcement Learning ] 8 marks
Consider a simple MDP with 3 states s1, s2, s3 and 2 actions a1, a2. The transition probabilities and
expected rewards are given in the following table. Assume discount factor γ = 1.

(from) Transition Probability (to State)
State Action Reward s1 s2 s3

s1 a1 8 0.2 0.6 0.2
a2 10 0.1 0.2 0.7

s2 a1 1 0.3 0.3 0.4
a2 −1 0.5 0.3 0.2

s3 a1 0 0 0 1.0
a2 0 0 0 1.0

Your task is to determine an optimal deterministic policy by manually working out simply the first
two iterations of value iteration algorithm. Initialize the value function for each state to be it’s max
(over actions) reward, i.e., we initialize the value function to be v0(s1) = 10, v0(s2) = 1, v0(s3) = 0.
Considering all states and actions, calculate qk(·, ·) and vk(·) from vk−1(·) using the value iteration
update, and then calculate the greedy policy πk(·) from qk(·, ·) for two iterations (i.e. for k = 1,2). (8)
Solution:
Value iteration algorithm follows Bellman’s optimality equation for iterative updates:

qk(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′vk−1(s′)

vk(s) = max
a∈A

qk(s,a) = max
a∈A

[
Ra

s + γ ∑
s′∈S

Pa
ss′vk−1(s′)

]
Following this, we present the updates for two value iterations as follows:

For k = 1,

q1(s1,a1) = 8+0.2×10.0+0.6×1.0+0.2×0 = 10.6

q1(s1,a2) = 10+0.1×10.0+0.2×1.0+0.7×0 = 11.2

∴ v1(s1) = max
[
10.6,11.2

]
= 11.2 and π1(s1) = a2

q1(s2,a1) = 1+0.3×10.0+0.3×1.0+0.4×0 = 4.3

q1(s2,a2) = −1+0.5×10.0+0.3×1.0+0.2×0 = 4.3

∴ v1(s2) = max
[
4.3,4.3

]
= 4.3 and π1(s2) = a1 or a2

For k = 2,

q2(s1,a1) = 8+0.2×11.2+0.6×4.3+0.2×0 = 12.82

q2(s1,a2) = 10+0.1×11.2+0.2×4.3+0.7×0 = 11.98

∴ v2(s1) = max
[
12.82,11.98

]
= 12.82 and π2(s1) = a1

q2(s2,a1) = 1+0.3×11.2+0.3×4.3+0.4×0 = 5.65

q2(s2,a2) = −1+0.5×11.2+0.3×4.3+0.2×0 = 5.89

∴ v2(s2) = max
[
5.65,5.89

]
= 5.89 and π2(s2) = a2

— The question paper ends here. —
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