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Q1. [ Concept Learning ] 10 marks

Consider the following set of attributes with their listed domain values:

– Fever: { High, Moderate, None }

– Cough: { Intense, Mild }

– RunningNose: { Yes, No }

– Weakness: { Extreme, Slight }

– Headache: { Yes, No }

– Saturation: { Good, Bad }

Suppose, based on the values of the above mentioned attributes, you are trying to learn the concept

whether someone has Covid or not. You are given with the following training data set (4 examples):

Example Fever Cough RunningNose Weakness Headache Saturation Covid

1 High Mild No Extreme No Bad Yes

2 High Mild No Slight No Bad Yes

3 None Intense No Slight No Good No

4 High Mild No Extreme Yes Good Yes

Consider the space H of conjunctive hypotheses, which, for each attribute, either:

– indicates by a ‘?’ that any value is acceptable; or

– specifies a single required value (e.g., Mild for Cough); or

– indicates by a ‘φ ’ that no value is acceptable.

Let a version space (a subset of consistent hypotheses in H) be represented by an S set (specific

boundary, at the top) and a G set (general boundary, at the bottom). Suppose the 4 training examples

above are presented in order. Answer the following.

(a) What is the total size (cardinality) of the possible hypothesis space? (2)

Solution:

Each attribute can take the mention values as well as ‘?’. Additionally, there is one more hy-

pothesis which takes nothing into consideration (all ‘φ ’). So, the total size (cardinality) of the

possible hypothesis space = (3+1)× (2+1)× (2+1)× (2+1)× (2+1)× (2+1)+1 = 973.

(b) Applying Candidate-Elimination algorithm, draw a diagram showing the evolution of the ver-

sion space for concept Covid given the training examples, by clearly expressing S1, G1, S2, G2,

S3, G3, S4, G4. If the G set does not change given a new example, just write Gi+1 =Gi (1≤ i< 4)

next to the drawing of Gi (similarly for S set as well). (4)

Solution:

S0 = 〈 φ , φ , φ , φ , φ , φ 〉

G0 = 〈 ?, ?, ?, ?, ?, ? 〉

S1 = 〈 High, Mild, No, Extreme, No, Bad 〉

G1 = 〈 ?, ?, ?, ?, ?, ? 〉 = G0

S2 = 〈 High, Mild, No, ?, No, Bad 〉

G2 = 〈 ?, ?, ?, ?, ?, ? 〉 = G1
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S3 = 〈 High, Mild, No, ?, No, Bad 〉 = S2

G3 = 〈 High, ?, ?, ?, ?, ? 〉 〈 ?, Mild, ?, ?, ?, ? 〉 〈 ?, ?, ?, ?, ?, Bad 〉

S4 = 〈 High, Mild, No, ?, ?, ? 〉

G4 = 〈 High, ?, ?, ?, ?, ? 〉 〈 ?, Mild, ?, ?, ?, ? 〉

(G1

4) (G2

4)

(c) Write down all the hypotheses in the final version space (the ones that lie between S4 and G4

according to the partial ordering relation Less-Specific-Than). (2)

Solution:

H1 = 〈 High, ?, No, ?, ?, ? 〉

H2 = 〈 High, Mild, ?, ?, ?, ? 〉

H3 = 〈 ?, Mild, No, ?, ?, ? 〉

(d) In the final version space, draw lines between hypotheses that are related by this relation. For

example, there should be a line between 〈?,Mild,?,?,?〉 and 〈?,Mild,?,Extreme,?,?〉. (2)

Solution:

S4

ր ↑ տ

H1 H2 H3

տ ր տ ր

G1
4

G2
4

Q2. [ Decision-Tree Learning ] 10 marks

For a binary classification problem, consider the training examples shown in the following table.

Instance A1 A2 A3 Target Class

1 True True 1.0 +

2 True True 6.0 +

3 True False 5.0 −

4 False False 4.0 +

5 False True 7.0 −

6 False True 3.0 −

7 False False 8.0 −

8 True False 7.0 +

9 False True 5.0 −

The attributes, A1 and A2, can take either True or False values, whereas A3 is a continuous attribute.

The Target Class can be either + (positive) or − (negative). Answer the following.

(a) What is the entropy of this collection of training examples with respect to positive (+) class? (2)

Solution:

There are 4 positive (+) examples and 5 negative (−) examples. Thus, P(+) =
4
9

and P(−) =
5
9
.

The entropy w.r.t. the positive (+) class of the training examples is =− 4
9

log2

(

4
9

)

= 0.52.

The entropy w.r.t. the negative (−) class of the training examples is =− 5
9

log2

(

5
9

)

= 0.47.
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The entropy of the training examples is =− 4
9

log2

(

4
9

)

− 5
9

log2

(

5
9

)

= 0.9911.

(b) What are the information gains of A1 and A2 relative to these training examples? (3)

Solution:

For attribute A1, the corresponding counts and probabilities are:

A1 + −

True 3 1

False 1 4

The entropy for A1 is = 4
9

[

− 3
4

log2

(

3
4

)

− 1
4

log2

(

1
4

)

]

+ 5
9

[

− 1
5

log2

(

1
5

)

− 4
5

log2

(

4
5

)

]

= 0.7616.

Therefore, the information gain for A1 is (0.9911−0.7616) = 0.2294.

For attribute A2, the corresponding counts and probabilities are:

A2 + −

True 2 3

False 2 2

The entropy for A2 is = 5
9

[

− 2
5

log2

(

2
5

)

− 3
5

log2

(

3
5

)

]

+ 4
9

[

− 2
4

log2

(

2
4

)

− 2
4

log2

(

2
4

)

]

= 0.9839.

Therefore, the information gain for A2 is (0.9911−0.9839) = 0.0072.

(c) For A3, which is a continuous attribute, compute the information gain for every possible split. (4)

Solution:

A3 Class Label Split Point Entropy Information Gain

1.0 + 2.0 0.8484 0.1427

3.0 − 3.5 0.9885 0.0026

4.0 + 4.5 0.9183 0.0728

5.0 −
5.0 − 5.5 0.9839 0.0072

6.0 + 6.5 0.9728 0.0183

7.0 +
7.0 − 7.5 0.8889 0.1022

(d) According to the information gain, which is the best split point considering only A3 attribute? (1)

Solution:

The best split for A3 occurs at split point 2.0.

(e) What is the best attribute (among A1, A2, A3) to split according to the information gain? (1)

Solution:

According to information gain, A1 produces the best split.

Note: There is an error in the marks breakup, so it is possible to score 11 in this question!!

Q3. [ Bayesian Leaning ] 10 marks

Consider the data set shown in the following table.
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Instance A B C Class

1 0 0 1 −

2 1 0 1 +

3 0 1 0 −

4 1 0 0 −

5 1 0 1 +

6 0 0 1 +

7 1 1 0 −

8 0 0 0 −

9 0 1 0 +

10 1 1 1 +

The attributes, A, B and C, can take two values (either 1 or 0) and the Class can be either + or −.

Answer the following.

(a) Estimate the conditional probabilities for the following:

P(A = 0 | +), P(B = 1 | +), P(C = 1 | +), P(A = 0 | −), P(B = 1 | −), P(C = 1 | −). (3)

Solution:

P(A = 0 | +) =
2

5

P(B = 1 | +) =
2

5

P(C = 1 | +) =
4

5

P(A = 0 | −) =
3

5

P(B = 1 | −) =
2

5

P(C = 1 | −) =
1

5

(b) Use the conditional probabilities in part (a) to predict the class label for a given test sample,

(A= 0, B= 1, C= 1), using the Naive Bayes approach. (4)

Solution:

P(+ | A= 0,B = 1,C= 1) = P(+).P(A= 0,B = 1,C= 1 | +)

=
P(+).P(A= 0 | +).P(B= 1 | +).P(C= 1 | +)

P(+).P(A= 0 | +).P(B= 1 | +).P(C= 1 | +)+P(−).P(A= 0 | −).P(B= 1 | −).P(C= 1 | −)

=

(

1
2

)

.
(

2
5

)

.
(

2
5

)

.
(

4
5

)

(

1
2

)

.
(

2
5

)

.
(

2
5

)

.
(

4
5

)

+
(

1
2

)

.
(

3
5

)

.
(

2
5

)

.
(

1
5

) =
8

11
.

∴ P(− | A= 0,B= 1,C= 1) = 1−P(+ | A= 0,B= 1,C= 1) =
3

11
.

Since P(+ | A = 0,B = 1,C = 1) > P(− | A = 0,B = 1,C = 1), therefore the predicted class

label will be ‘+’.

(c) Are the variables, A and B, independent with values, A= 1 and B= 1? (1.5)

Solution:

P(A= 1) = 1

2
and P(B= 1) = 2

5
.

Since P(A= 1,B = 1) = 1

5
= P(A= 1).P(B = 1), therefore A and B are independent.

(d) Are these variables, A and B, conditionally independent with values, A= 1 and B= 1, given the

class ‘+’? (1.5)

Solution:

P(A= 1 | +) = 3

5
and P(B= 1 | +) = 2

5
.

Since P(A = 1,B = 1 | +) = 1

5
6= 6

25
= P(A = 1 | +).P(B = 1 | +), therefore A and B are not

conditionally independent given the class ‘+’.
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Q4. [ Instance-based Learning ] 6 marks

Consider the one-dimensional data set shown in the following table.

x 0.5 3.0 4.5 4.6 4.9 5.2 5.3 5.5 7.0 9.5

y − − + + + − − + − −

Here, x can take continuous values and y has two labels (+ and −). Answer the following.

(a) Classify the data point x= 5.0 according to its 1-, 3-, 5-, and 9- nearest neighbors (using majority

voting). Briefly explain your results. (2)

Solution:

– 1-nearest neighbor: +
[

since the nearest data point, x = 4.9, has ‘+’ label
]

– 3-nearest neighbor: −
[

since 3 nearest data points, x = 4.9,5.2,5.3, have one ‘+’ and two ‘−’ labels
]

– 5-nearest neighbor: +
[

since 5 nearest data points, either x = 4.6,4.9,5.2,5.3,5.5 or x = 4.5,4.6,4.9,5.2,5.3

(both cases) have three ‘+’ and two ‘−’ labels
]

– 9-nearest neighbor: −
[

since 9 nearest data points include all points except either x = 0.5 or x = 9.5 and in both

cases, we have four ‘+’ and five ‘−’ labels
]

(b) Again classify the same data point x = 5.0 according to its 1-, 3-, 5-, and 9- nearest neighbors

(using distance-weighted voting). Briefly explain your results.

Note: In distance-weighted scheme, the weights are inversely proportional to the Euclidean

distances between two data points. (4)

Solution:

– 1-nearest neighbor: +
[

the nearest data point, x = 4.9, has ‘+’ label
]

– 3-nearest neighbor: +
[

since 3 nearest data points, x = 4.9,5.2,5.3, have one ‘+’ and two ‘−’ labels, the com-

bined distance-weight with the ‘+’ labeled point (which is, 1
0.1

= 10) is more than the

combined distance-weight with the ‘−’ labeled points (which is, 1
0.2

+ 1
0.3

= 8.67)
]

– 5-nearest neighbor: +
[

since 5 nearest data points, either x = 4.6,4.9,5.2,5.3,5.5 or x = 4.5,4.6,4.9,5.2,5.3

(both cases) have three ‘+’ and two ‘−’ labels, the combined distance-weight with the ‘+’

labeled points (which is, 1
0.1

+ 1
0.4

+ 1
0.5

= 14.5) is more than the combined distance-weight

with the ‘−’ labeled points (which is, 1
0.2

+ 1
0.3

= 8.67)
]

– 9-nearest neighbor: +
[

since 9 nearest data points include all points except either x = 0.5 or x = 9.5 and in both

cases, we have four ‘+’ and five ‘−’ labels; the combined distance-weight with the ‘+’

labeled points (which is, 1
0.1

+ 1
0.4

+ 1
0.5

+ 1
0.5

= 16.5) is more than the combined distance-

weight with the ‘−’ labeled points (which is, 1
0.2

+ 1
0.3

+ 1
2.0

+ 1
2.0

+ 1
4.5

= 12.56)
]

Q5. [ Perceptrons ] 4 marks

Suppose we have a multi-layer perceptron network (shown below) with linear activation units. In

other words, the output of each unit is a constant C multiplied by the weighted sum of inputs.

Answer the following.
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2

Y

X 1
w1

w5

6w

w4

w3

w2

X

(a) Can any function that is represented by the above network also be represented by a single unit

perceptron? If yes, draw the equivalent perceptron detailing the weights and the activation func-

tion. Otherwise, briefly explain why not possible. (2)

Solution:

Yes. We can use C2 as the activation function to be multiplied with the weighted sum of in-

puts. Here, the weights of the inputs, X1 and X2 will be, (w1.w5 +w2.w6) and (w3.w5 +w4.w6),
respectively. Below is the schematic description of the same.

2

1w5 w2w6+

5w3w + 6w4w

Y

X 1

X 2

C

w

(b) Can the space of functions that is represented by the above network also be represented by linear

regression? If yes, present the linear regression function detailing the coefficients. Otherwise,

briefly explain why not possible. (2)

Solution:

Yes. Any function in the given network has the following form:

Y = C2
.(w1.w5 +w2.w6).X1 +C2

.(w3.w5 +w4.w6).X2 = β1.X1 +β2.X2.

This is linear regression on inputs, X1 and X2, with constant coefficients,

β1 =C2
.(w1.w5 +w2.w6) and β2 =C2

.(w3.w5 +w4.w6).

Q6. [ Logistic Regression and Neural Network ] 10 marks

For a binary logistic regression model with input attribute set x and an output y, having an internal

sigmoid activation function (of the form σ(z) = 1
1+e−z , where z = wT .x with weight vector w), we

predict the output y = 1 when P(y = 1 | x ; w)≥ 1
2
.

(a) Prove that, this logistic regression model is also a linear classifier. (4)

Solution:

Using the parametric form for P(y = 1 | x ; w):

P(y = 1 | x ; w)≥
1

2
=⇒

1

1+ e−wT .x
≥

1

2

=⇒ 1+ e−wT .x ≤ 2

=⇒ e−wT .x ≤ 1

=⇒ −wT
.x ≤ 0

=⇒ wT
.x ≥ 0

Therefore, we predict y = 1 if wT .x ≥ 0. [ Proved ]
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(b) Consider the XOR function y = (x1 ∧¬x2)∨ (¬x1 ∧ x2). We can alternatively express this as,

y =

{

≥ 1
2
, if x1 6= x2

<
1
2
, otherwise

. Using the above-mentioned binary logistic regrassion model as a unit

having binary inputs x0(= 1), x1 and x2 (i.e. x= [1,x1,x2]
T ), and output y, draw a fully connected

three-unit Neural Network that realizes the function y = (x1 XOR x2). Show the suitable weight

vector, w = [w0,w1,w2]
T , for each unit clearly. (6)

Solution:

Let y = (A∨B), where A = (x1 ∧¬x2) and B = (¬x1 ∧ x2).

In the Neural Netwrk, we shall have the first layer implementing A and B (two AND formulas)

through two units and the last layer/unit implementing y (the OR formula).

V

x

x

1

2

y

A = x1 x2

x1 x2B = 

1

100

100

−10

−10 100

100
−10

1
−100

−100

A V B

V

Note:

– Many combinations of weight can realize the same XOR function, provided that,

∗ when the weighted sum is −ve, the sigmoid output will be <
1
2
;

∗ when the weighted sum is +ve, the sigmoid output will be ≥ 1
2
.

– If the relative magnitude of weights is skewed, then the output may also be skewed.

Q7. [ Linear Classifier and Support Vector Machine ] 10 marks

Consider a set of 2-dimensional training data points (x1,x2) belonging to two classes ‘+1’ and ‘−1’,

respectively, as shown below.

– Class ‘+1’: (3,1) ; (3,−1) ; (6,1) ; (6,−1)

– Class ‘−1’: (1,0) ; (0,1) ; (0,−1) ; (−1,0)

We design a linear hard-margin SVM to classify these linearly separable points. Answer the following.

(a) Pictorially (graphically) represent the constellation of data points and the optimal separating

hyperplane. Write the equation of the optimal separator and mention the width of the margin

(figuring it out manually from the diagram/graph you have shown). (2)

Solution:

The constellation of data points and the optimal separator (with margin) is presented below.

SVM tries to maximize the margin between two classes of data points. Therefore, the optimal

decision boundary crosses the point (2,0) and is parallel to vertical axis. Thus, the equation of

optimal separator is given as, x1 −2 = 0, having the width of the margin = 2-units.

(b) Which data points are the support vectors here? (2)

Solution:

Support vectors are (3,1), (3,−1) and (1,0). These three points have minimum perpendicular

distance from the separator line (Euclidean distance of 1 unit).
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Margin

−

− −

−

++

+ +

(1,0)(−1,0)

(0,−1)

(0,1) (3,1)

(3,−1)

(6,1)

(6,−1)

Separator

(c) What weight vector and threshold (bias) value are being learnt using hard-margin SVM training

algorithm with these eight training points? Show the detailed calculations. (4)

Solution:

Let the weight vector learnt be of the for w = [w1,w2]
T and threshold/bias is b.

From the three support vectors, (3,1), (3,−1) and (1,0) (which are the closest points from the

separating line), we get,

3w1 +w2 +b = +1

3w1 −w2 +b = +1

w1 +b = −1

Solving above equations, we get, w1 = 1, w2 = 0, and b =−2.

(d) Using the learnt weights and threshold values (in part (c)), what is the margin you get for the

optimal classifier? Derive mathematically. (2)

Solution:

Margin =
2

||w||
=

2
√

w2
1 +w2

2

= 2.

— END —
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