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Q1. [ Bayesian Networks ] 11 marks

Let us learn some aspects about our life through inference in the following Bayesian Network shown.

O −→ H ←− W −→ S −→ F

The variables of our interest are as follows:

O: being Optimistic, W: Working hard, H: being Happy,

S: founding a Start-up company, F: being Famous.

The conditional probability tables for the model are given as:

P(O = true) = 0.5 P(W = true) = 0.4

P(H = true | O = true, W = true) = 0.9 P(H = true | O = true, W = f alse) = 0.7

P(H = true | O = f alse, W = true) = 0.5 P(H = true | O = f alse, W = f alse) = 0.2

P(S = true |W = true) = 0.6 P(S = true |W = f alse) = 0.2

P(F = true | S = true) = 0.4 P(F = true | S = f alse) = 0.1

Compute the following probabilities. Show your calculations in details.

(a) P(H = f alse | O = f alse, W = true, S = true, F = true) =? (3)

Solution:

P(H = f | O = f ,W = t,S = t,F = t) =
P(H = f ,O = f ,W = t,S = t,F = t)

P(O = f ,W = t,S = t,F = t)

=
P(H = f ,O = f ,W = t,S = t,F = t)

∑
h∈{t, f}

P(H = h,O = f ,W = t,S = t,F = t)

=
0.5×0.5×0.4×0.6×0.4

(0.5×0.5×0.4×0.6×0.4)+ (0.5×0.5×0.4×0.6×0.4)
= 0.5

(b) P(H = true | S = true, F = true) =? (4)

Solution:

P(H = t | S = t,F = t) =
P(H = t,S = t,F = t)

P(S = t,F = t)

=

∑
o∈{t, f}

∑
w∈{t, f}

P(H = t,S = t,F = t,O = o,W = w)

∑
h∈{t, f}

∑
o∈{t, f}

∑
w∈{t, f}

P(H = h,S = t,F = t,O = o,W = w)

=

P(F = t | S = t) ∑
w∈{t, f}

P(W = w)P(S = t |W = w) ∑
o∈{t, f}

P(O = o)P(H = t | O = o,W = w)

P(F = t | S = t) ∑
w∈{t, f}

P(W = w)P(S = t |W = w) ∑
o∈{t, f}

P(O = o) ∑
h∈{t, f}

P(H = h | O = o,W = w)

=
0.4× (0.4× 0.6× (0.5×0.9+0.5×0.5)+0.6×0.2× (0.5×0.7+0.5×0.2))

0.4× (0.4× 0.6×1+0.6×0.2×1)
= 0.6167
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(c) P(F = true | H = true) =? (4)

Solution:

P(F = t | H = t) =
P(F = t,H = t)

P(H = t)

=

∑
o∈{t, f}

P(O = o) ∑
w∈{t, f}

P(W = w)P(H = t | O = o,W = w) ∑
s∈{t, f}

P(S = s |W = w)P(F = t | S = s)

∑
o∈{t, f}

P(O = o) ∑
w∈{t, f}

P(W = w)P(H = t | O = o,W = w) ∑
s∈{t, f}

P(S = s |W = w) ∑
g∈{t, f}

P(F = g | S = s)

=
0.5× (0.4×0.9× (0.6×0.4+0.4×0.1)+0.6×0.7× (0.2×0.4+0.8×0.1)+0.5× (0.4×0.5× (0.6×0.4+0.4×0.1)+0.6×0.2× (0.2×0.4+0.8×0.1))

0.5× (0.4×0.9×1+0.6×0.7×1)+0.5× (0.4×0.5×1+0.6×0.2×1)

= 0.2211

Q2. [ Artificial Neural Networks ] 5 marks

Consider the following convolutional neural network architecture.
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In the first layer, we have a one-dimensional con-

volution with a single filter of size 3, such that hi =

s
( 3

∑
j=1

v j.xi+ j−1

)

. The second layer is fully con-

nected, such that z =
4

∑
i=1

wi.hi. The hidden units’

activation function s(x) is the logistic (sigmoid)

function of the form s(x) = 1
1+e−x . The output unit

is linear (no activation function). We perform gra-

dient descent on the loss function, L = (y− z)2,

where y is the training label for x.

Compute the following.

(a) What will be the expression for δL

δwi
? (2)

Solution:

L = (y− z)2 =⇒ δL

δ z
=−2(y− z)

z =
4

∑
i=1

wi.hi =⇒ δ z

δwi

= hi

∴
δL

δwi

=
δL

δ z
.

δ z

δwi

= −2(y− z).hi

(b) What will be the expression for δL

δv j
? (3)

Solution:

hi = s
( 3

∑
j=1

v j.xi+ j−1

)

=⇒ δhi

δv j

= hi.
(

1−hi

)

.xi+ j−1 . . .since, s′(x) = s(x)
(

1− s(x)
)

z =
4

∑
i=1

wi.hi =⇒ δ z

δhi

= wi

∴
δL

δv j

=
δL

δ z
.

δ z

δv j

=
δL

δ z
.

4

∑
i=1

δ z

δhi

.
δhi

δv j

= −2(y− z).
4

∑
i=1

wi.hi.
(

1−hi

)

.xi+ j−1
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Instance True Class P(A, . . . ,Z, M1) P(A, . . . ,Z, M2)

1 + 0.73 0.61

2 + 0.69 0.03

3 − 0.44 0.68

4 − 0.55 0.31

5 + 0.67 0.45

6 + 0.47 0.09

7 − 0.08 0.38

8 − 0.15 0.05

9 + 0.45 0.01

10 − 0.35 0.04

Q3. [ Classifier Evaluation ] 5 marks

You are asked to evaluate the performance of two classification models, M1 and M2. The test set you

have chosen contains 26 binary attributes, labeled as A through Z.

The above table shows the posterior probabilities obtained by applying the models to the test set.

(Only the posterior probabilities for the positive class are shown). As this is a two-class problem,

P(−) = 1−P(+) and P(− | A, . . . ,Z) = 1−P(+ | A, . . . ,Z). Assume that, we are mostly interested

in detecting instances from the positive class.

For both models, M1 and M2, suppose you choose the cutoff threshold to be t = 0.5. In other words,

any test instances whose posterior probability is greater than t will be classified as a positive example.

Compute the precision, recall, and F-measure for both models at this threshold value. (5)

Solution:

When t = 0.5, the confusion matrix for M1 and M2 are shown in the tables.

M1 Prediction

+ −
Actual + 3 2

− 1 4

M2 Prediction

+ −
Actual + 1 4

− 1 4

For M1:

Precision = 3
4
= 0.75. Recall = 3

5
= 0.6. F-score = 2×0.75×0.6

0.75+0.6
= 2

3
= 0.67.

For M2:

Precision = 1
2
= 0.5. Recall = 1

5
= 0.2. F-score = 2×0.5×0.2

0.5+0.2
= 2

7
= 0.29.

Q4. [ Computational Learning Theory ] 12 marks

Answer the following questions.

(a) Let the growth function mH(N) for some hypothesis set, H (N = number of training examples),

be mH(N) = 1
2
N2+ 1

2
N +1. Determine the Generalization Bound (Ω) for Eout with at least 95%

probability (confidence) when the number of training examples are 1000. (2)

Solution:

Given that, 1−δ = 0.95, N = 103, and mH(N) = 1
2
N2 + 1

2
N +1.

We know that, Eout ≤ Ein +Ω, where Generalization Bound, Ω =
√

8
N
. ln

(4.mH (2N)
δ

)

.

Therefore, Ω =

√

8
1000

ln
(4×2001001)

0.05

)

= 0.389.

(b) Consider the feature transform z = [L0(x) L1(x) L2(x)]
T with Legendre polynomials and the

linear model h(x) = wT .z. For the regularized hypothesis with w = [−1 + 2 − 1]T , what is

h(x) explicitly as a function of x? (2)
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Solution:

L(x) = 1, L1(x) = x, L2(x) =
1

2
(3x2−1)

We may write,

h(x) = [−1+2−1].[L0(x) L1(x) L2(x)]
T

= −L0(x)+2L1(x)−L2(x)

= −1+2x− 1

2
(3x2−1) =−3

2
x2 +2x− 1

2

(d) What the VC-dimension of axis-aligned rectangles in a 2-dimensional plane? Derive / Prove. (4)

Solution:

The VC-dimension of axis-aligned rectangles is 4. We prove dVC = 4 as follows:

– There exist 4 points that can be shattered. Hence, dVC ≥ 4.

Proof: It is clear that capturing just 1 point and all 4 points are both trivial, because a

bounding rectangle can cover them easily. The figure below shows how we can capture a

general constellation of 2 points and 3 points.

– No set of 5 points can be shattered. Hence, dVC < 5.

Proof: Suppose we have 5 points. A shattering must allow us to select all 5 points and allow

us to select 4 points without the 5-th.

Our minimum enclosing axis-aligned rectangle that allows us to select all five points is

defined by only four points – one for each edge. So, it is clear that the fifth point must lie

either on an edge or on the inside of the rectangle. This prevents us from selecting four

points without the fifth, thereby disallowing the possibility to realize all dichotomies for

general constellations of 5 points.

(e) What is the VC-dimension of axis-aligned squares in a 2-dimensional plane? Derive / Prove. (4)

Solution:

The VC-dimension of axis-aligned squares is 3. We prove dVC = 3 as follows:

– There exist 3 points that can be shattered. Hence, dVC ≥ 3.

Proof: Again, 1 point and 3 points are trivial, because a bounding square can cover them

easily. The figure below shows how we can capture a general constellation of 2 points.
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– No set of 4 points can be shattered. Hence, dVC < 4.

Proof: Suppose we have four points arranged such that they define a rectangle. Now, sup-

pose we want to select two points (A and C, in this case).

The minimum enclosing square for A and C must contain either B or D – so we cannot

capture just two points with a axis-aligned square.

Q5. [ Bias and Variance ] 6 marks

For z ∈R, you are trying to estimate a true function g(z) = 2z2 with linear (least-squares) regression,

where the regression function is a line h(z) = wz that goes through the origin and w ∈ R. Each

sample point x ∈ R is drawn from the uniform distribution on [−1,1] and has a corresponding label

y = g(x) ∈ R. There is no noise in the labels. We train the model with just one sample point! Call it

x, and assume x 6= 0. We want to apply the bias-variance decomposition to this model.

What is the bias and variance of your model h(z) as a function of a test point z ∈ R? Your final bias

and variance both should not include an x; work out the expectations. (3+3)

(Hint: start by working out the value of the least-squares weight w.)

Solution:

The least-squares solution for linear regression is w = X†y, where X is the 1×1 matrix [x].

Hence X† = (XT X)−1.XT = x
x2 = 1

x
.

Then, w = X†y = 1
x
(2x2) = 2x, and h(z) = wz = 2xz.

∴ Bias[h(z)] = E[h(z)]−g(z) = E[2xz]−2z2 = 2z.E[x]−2z2 = 2z.

∫ 1

−1
x

1

2
dx−2z2 =−2z2

(However, it may seem obvious that E[x] = 0 for a uniformly distributed x∈ [−1,1]; hence the integral

is not required.)

∴ Var[h(z)] =Var[2xz] = E[4x2z2]−E[2xz]2 =
∫ 1

−1
4x2z2 1

2
dx−4z2

.E[x]2 =
2

3
x3z2

∣

∣

∣

1

−1
−0 =

4

3
z2

Alternative Approach (Variance Computation):

Var[h(z)] =Var[2xz] = 4z2
.Var[x] = 4z2

.E[(x−E[x])2] = 4z2
.

∫ 1

−1
x2 1

2
dx =

2

3
x3z2

∣

∣

∣

1

−1
−0 =

4

3
z2

Q6. [ Unsupervised Learning ] 16 marks

Suppose, six points (P1, P2, P3, P4, P5 and P6) are provided in a 2-dimensional plane. The Euclidean

distance between a pair of these points are provided in the table below.

If you use Hierarchical Agglomerative Clustering technique to form the single-link dendrogram, ini-

tially each point will form separate clusters, denoted as, {P1}, {P2}, {P3}, {P4}, {P5} and {P6}. Then,

at the first (bottom-most grouping) phase, the algorithm selects {P1} and {P2} clusters to merge and
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P1 P2 P3 P4 P5 P6

P1 0.00

P2 0.12 0.00

P3 0.51 0.25 0.00

P4 0.84 0.16 0.14 0.00

P5 0.28 0.77 0.70 0.45 0.00

P6 0.34 0.61 0.93 0.20 0.67 0.00

form new cluster {P1,P2}, as the distance considered for grouping here was, dist(P1,P2) = 0.12 (the

minimum among all pairs), for both single-linkage and complete-linkage variants.

Now, you need to complete the rest of the phases mentioning the next new cluster formed and the

distance considered that time for both single-linkage and complete-linkage variations in the following.

(a) Using Single Linkage Hierarchical Agglomerative Clustering technique to form the single-link

dendrogram, complete the remaining phases (missing entries) in the following table. (4)

Phase→ 1st 2nd 3rd 4th 5th

New Cluster Formed {P1,P2}
Distance Considered 0.12

Show final result of hierarchical clustering with single linkage by drawing a dendrogram. (1)

Solution:

Phase→ 1st 2nd 3rd 4th 5th

New Cluster Formed {P1,P2} {P3,P4} {P1,P2,P3,P4} {P1,P2,P3,P4,P6} {P1,P2,P3,P4,P5,P6}
Distance Considered 0.12 0.14 0.16 0.20 0.28

Note: At every phase, the clustering is here based on choosing the minimum among the minimum

distances between a pair of existing clusters.

Dendrogram for Single−Linkage

0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12

P1 P2 P3 P4 P6 5P

Hierarchical Clustering Process

(b) Using Complete Linkage Hierarchical Agglomerative Clustering technique to form the complete-

link dendrogram, complete the remaining phases (missing entries) in the above table. (4)

Phase→ 1st 2nd 3rd 4th 5th

New Cluster Formed {P1,P2}
Distance Considered 0.12

Show final result of hierarchical clustering with complete linkage by drawing a dendrogram. (1)
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Phase→ 1st 2nd 3rd 4th 5th

New Cluster Formed {P1,P2} {P3,P4} {P1,P2,P6} {P3,P4,P5} {P1,P2,P3,P4,P5,P6}
Distance Considered 0.12 0.14 0.61 0.70 0.93

Solution:

Note: At every phase, the clustering is here based on choosing the minimum among the maxi-

mum distances between a pair of existing clusters.

Dendrogram for Complete−Linkage

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

P P P P P P1 2 6 3 4 5

Hierarchical Clustering Process

0.9

(c) Suppose, for both the above variants (single and complete linkage) of hierarchical clustering, we

stop after 4th phase. Compute the average silhouette coefficient (SC) of the overall clustering

for both these cases. (3+3)

Solution:

Let a indicate the average distance of a point to other points within its cluster, and b indicate the

minimum of the average distance of a point to points in another cluster.

Single-Linkage Hierarchical Clustering Case:

Here after 4th phase, the two clusters formed are: {P1,P2,P3,P4,P6} and {P5}.
The silhouette coefficient (SC) for each of the points are computed as:

P1 : SC = 1− a

b
= 1−

(

0.12+0.51+0.84+0.34
4

)

0.28
=−0.62

P2 : SC = 1− a

b
= 1−

(

0.12+0.25+0.16+0.61
4

)

0.77
= 0.63

P3 : SC = 1− a

b
= 1−

(

0.51+0.25+0.14+0.93
4

)

0.70
= 0.35

P4 : SC = 1− a

b
= 1−

(

0.84+0.16+0.14+0.20
4

)

0.45
= 0.26

P5 : SC = 1− a

b
= 1− 0

(

0.28+0.77+0.70+0.45+0.67
5

) = 1

P6 : SC = 1− a

b
= 1−

(

0.34+0.61+0.93+0.20
4

)

0.67
= 0.22

Cluster-1 :
(

{P1,P2,P3,P4,P6}
)

Average-SC =
−0.62+0.63+0.35+0.26+0.22

5
= 0.17

Cluster-2 :
(

{P5}
)

Average-SC =
1

1
= 1

Overall : Average-SC =
0.17+1

2
= 0.585
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Complete-Linkage Hierarchical Clustering Case:

Here after 4th phase, the two clusters formed are: {P1,P2,P6} and {P3,P4,P5}.
The silhouette coefficient (SC) for each of the points are computed as:

P1 : SC = 1− a

b
= 1−

(

0.12+0.34
2

)

(

0.51+0.84+0.28
3

) = 0.58

P2 : SC = 1− a

b
= 1−

(

0.12+0.61
2

)

(

0.25+0.16+0.77
3

) = 0.07

P3 : SC = 1− a

b
= 1−

(

0.14+0.70
2

)

(

0.51+0.25+0.93
3

) = 0.25

P4 : SC = 1− a

b
= 1−

(

0.14+0.45
2

)

(

0.84+0.16+0.20
3

) = 0.26

P5 : SC = 1− a

b
= 1−

(

0.70+0.45
2

)

(

0.28+0.77+0.67
3

) =−0.003

P6 : SC = 1− a

b
= 1−

(

0.34+0.61
2

)

(

0.93+0.20+0.67
3

) = 0.21

Cluster-1 :
(

{P1,P2,P6}
)

Average-SC =
0.58+0.07+0.21

3
= 0.29

Cluster-2 :
(

{P3,P4,P5}
)

Average-SC =
0.25+0.26−0.003

3
= 0.17

Overall : Average-SC =
0.29+0.17

2
= 0.23

Q7. [ Ensemble Learning ] 10 marks

In this problem, we study how boosting algorithm performs on a very simple classification problem.

We are given with four training points, P1, P2, P3, P4, in a 1-dimensional line (x-valued) having their

respective values as x = 1, x = 2, x = 3, x = 4 and their corresponding 2-class (+/−) labels as −, +,

−, +, respectively.

We shall use decision stumps as our weak learner / hypothesis. Decision stump classifier chooses a

constant value c and classifies all points where x ≥ c as one class and other points where x < c as the

other class. In our given example, let us chose one such decision stump as follows: x ≥ 3 region is

classified as ‘+’ zone and x < 3 region is classified as ‘−’ zone.

Answer the following questions.

(a) What is the initial weight assigned to each data point? (1)

Solution:

Since Weight(P1) =Weight(P2) =Weight(P3) =Weight(P4) and

Weight(P1)+Weight(P2)+Weight(P3)+Weight(P4) = 1,

∴ Weight(P1) =Weight(P2) =Weight(P3) =Weight(P4) =
1
4
.

(b) How many different decision stumps are possible for the data points given? (1)

Solution:

(4 separators/stumps) x (2 different class organizations for each)

= 8 different decision stumps are possible.
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(c) Which data point(s) will have weights increased after the boosting process as per the decision

stump considered in the problem? (1)

Solution:

Since the given decision stump will misclassify P2 and P3 as ‘+’ and ‘−’, respectively, so only

these two data points (P2 and P3) may have their weights increased after boosting.

(d) What will be weights of all the data points after boosting is performed? Show your approach. (4)

Solution:

εt =
1

4
+

1

4
=

1

2

αt =
1

2
ln
(1− 1

1
1
1

)

=
1

2
ln1 = 0

Also, normalization factor, Z = 2
√

εt(1− εt) = 2

√

1
2
× 1

2
= 1.

So, for correctly classified data-points (P1 and P4), the weight will become:

Weight(P1) =Weight(P4) =
Wt .e

−αt

Z
=

1

4

So, for wrongly classified data-points (P2 and P3), the weight will become:

Weight(P2) =Weight(P3) =
Wt .e

αt

Z
=

1

4

(e) Indicate whether the following statements are true / false. Give a brief justification.

(i) We cannot perfectly classify all the training examples given in this problem by only apply-

ing boosting algorithm (AdaBoost). (1.5)

(ii) The training error of boosting classifier (combination of all the weak classifier) monotoni-

cally decreases as the number of iterations in the boosting algorithm increases. (1.5)

Solution:

(i) True, since the data is not linearly separable.

(ii) False, since boosting minimizes loss function:
m

∑
i=1

e−yi. f (xi),

which does not necessary mean that training error monotonically decrease.

Q8. [ Principal Component Analysis ] 5 marks

Given the (x,y)-coordinates of four data points in two-dimensional space: (4,1), (2,3), (5,4) and

(1,0), calculate the first principal component. Show your calculations in details. (5)

Solution:

The mean of the given data points is:
(

4+2+5+1
4

1+3+4+0
4

)

= (3,2).

The covariance matix can be constructed as:

CoVar(x,x) = Var(x) =

[

(4−3)2 +(2−3)2 +(5−3)2 +(1−3)2
]

4
=

5

2

CoVar(x,y) = CoVar(y,x) =

[

(4−3)× (1−2)+(2−3)× (3−2)+ (5−3)× (4−2)+(1−3)× (0−2)
]

4
=

3

2

CoVar(y,y) = Var(y) =

[

(1−2)2 +(3−2)2 +(4−2)2 +(0−2)2
]

4
=

5

2

∴ CoVar =

[

CoVar(x,x) CoVar(x,y)
CoVar(y,x) CoVar(y,y)

]

=

[

5
2

3
2

3
2

5
2

]

.
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To compute eigenvalues, we make
∣

∣ CoVar−λ I
∣

∣= 0, which gives:

(
5

2
−λ )2− 9

4
= 0 =⇒ λ = 4,1

The corresponding eigenvector with respect to the highest eigenvalue is the principal component,

which is computed as,

[

5
2

3
2

3
2

5
2

]

.

[

x

y

]

= 4.

[

x

y

]

=⇒ [x,y]T =
[ 1√

2
,

1√
2

]T

.

Alternative Approach:

Since the mean of the given data points, X =









4 1

2 3

5 4

1 0









is (3,2), we can center the given points with

respect to mean as, X̂ =









1 −1

−1 1

2 2

−2 −2









.

Now, X̂T .X̂ =

[

10 6

6 10

]

.

(Divide by 4 if you want the sample covariance matrix, but we do not care about the magnitude here.)

Its eigenvectors are
[

1√
2
,

1√
2

]T

for eigenvalue 16 and
[

1√
2
,− 1√

2

]T

for eigenvalue 4. The former

eigenvector is chosen to be the principal component (as the corresponding eigenvalue is the highest).

Q9. [ Kernel Functions ] 5 marks

Answer the following.

(a) Let k1 and k2 be (valid) kernels; that is, k1(x,y) = Φ1(x)
T .Φ1(y) and k2(x,y) = Φ2(x)

T .Φ2(y).
Show that k = k1+k2 is a valid kernel by explicitly constructing a corresponding feature mapping

Φ(z). (2)

Solution:

Note that,

k(x,y)= k1(x,y)+k2(x,y)=Φ1(x)
T .Φ1(y)+Φ2(x)

T .Φ2(y)=
[

Φ1(x)
T Φ2(x)

T
]

.
[

Φ1(y) Φ2(y)
]T

If we let Φ(z) =
[

Φ1(x) Φ2(x)
]T

, then we have k(x,y) = Φ(z)T .Φ(z).

Therefore, k = k1 + k2 is a valid kernel.

(b) The polynomial kernel is defined to be

k(x,y) = (xT
.y+ c)d

,

where x,y ∈R
n, and c≥ 0. When we take d = 2, this kernel is called the quadratic kernel. Find

the feature mapping Φ(z) that corresponds to the quadratic kernel. (3)

Solution:

First we expand the dot product inside, and square the entire sum. We will get a sum of the

squares of the components and a sum of the cross products.

(xT
.y+ c)d =

(

c+
n

∑
i=1

xiyi

)2

= c2 +
n

∑
i=1

x2
i y2

i +
n

∑
i=2

i−1

∑
j=1

2xiyix jy j +
n

∑
i=1

2xiyic = Φ(x)T
.Φ(y)
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Pulling this sum into a dot product of x components and y components, we have,

Φ(x) =
[

c,x2
1, . . . ,x

2
n,
√

2x1x2, . . . ,
√

2x1xn,
√

2x2x3, . . . ,
√

2x2xn, . . . ,
√

2xn−1xn,
√

2cx1, . . . ,
√

2cxn

]

Φ(y) =
[

c,y2
1, . . . ,y

2
n,
√

2y1y2, . . . ,
√

2y1yn,
√

2y2y3, . . . ,
√

2y2yn, . . . ,
√

2yn−1yn,
√

2cy1, . . . ,
√

2cyn

]

In this feature mapping, we have c, the squared components of the vector,
√

2 multiplied by all

of the cross terms, and
√

2c multiplied by all of the components.

Q10. [ Expectation-Maximization Algorithm] 15 marks

Consider the Bayes Network structure shown below. From the figure below, we abbreviate as follows:

S = Study well, A = high Attendance, G = good ML-Grade, P = better Placement, C = high CGPA.

Study Attendance

ց ւ
ML-Grade

ւ ց
Placement CGPA

We are given the following K = 8 training examples as shown below, where only two examples

contain unobserved values (marked with ?), namely, p7 and c8. We like to simulate a few steps of the

simplified EM algorithm by hand.

K S A G P C

k = 1 1 0 1 1 1

k = 2 0 1 1 1 0

k = 3 1 1 1 1 1

k = 4 0 0 0 0 1

k = 5 0 0 0 1 0

k = 6 0 0 0 0 0

k = 7 1 1 1 ? 1

k = 8 1 1 1 1 ?

Notation: Here, sk, ak, gk, pk, and ck indicate the values of S, A, G, P, and C, respectively, as seen in

the k-th example/row. For example, s1 = 1, a1 = 0, g1 = 1, p1 = 1, and c1 = 1.

Answer the following questions:

(a) Given that all variables are Boolean, how many basic parameters we need to estimate for the

given Bayes Network?

For example, one parameter will be θ(g | 11), which stands for P(G = 1 | S = 1,A = 1). (2)

Solution:

We need to estimate 10 parameters, which are given as follows:

θ(s) = P(S = 1) θ(a) = P(A = 1)

θ(g | 00) = P(G = 1 | S = 0, A = 0) θ(g | 01) = P(G = 1 | S = 0, A = 1)

θ(g | 10) = P(G = 1 | S = 1, A = 0) θ(g | 11) = P(G = 1 | S = 1, A = 1)

θ(p | 0) = P(P = 1 | G = 0) θ(p | 1) = P(P = 1 | G = 1)

θ(c | 0) = P(C = 1 | G = 0) θ(c | 1) = P(C = 1 | G = 1)
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(b) Now, we like to simulate the first E-step of the EM algorithm. Before we start, we initialize all

the parameters as 0.5, and then proceed to execute the E-step. What are the following expectation

values that will get calculated in this E-step? In particular, calculate the following: (2+2)

– E(p7 = 1 | s7,a7,g7,c7,θ) =?

– E(c8 = 1 | s8,a8,g8, p8,θ) =?

(Note that, only two examples (k=7 and k=8) contains unobserved variables, where p7 =?, but

s7 = a7 = g7 = c7 = 1; and c8 =?, but s8 = a8 = g8 = p8 = 1, respectively.)

Solution:

∴ E(p7 = 1 | s7,a7,g7,c7,θ)

=
P(p7 = 1,s7,a7,g7,c7 | θ)

P(p7 = 1,s7,a7,g7,c7 | θ)+P(p7 = 0,s7,a7,g7,c7 | θ)

=
θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)+θ(p7 = 0 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

=
0.5×0.5×0.5×0.5

2×0.5×0.5×0.5×0.5
= 0.5 = E(p7 = 1 | g7 = 1,θ(p | 1))

∴ E(c8 = 1 | s8,a8,g8, p8,θ)

=
P(c8 = 1,s8,a8,g8, p8 | θ)

P(c8 = 1,s8,a8,g8, p8 | θ)+P(c8 = 0,s8,a8,g8, p8 | θ)

=
θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)+θ(c8 = 0 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

=
0.5×0.5×0.5×0.5

2×0.5×0.5×0.5×0.5
= 0.5 = E(c8 = 1 | g7 = 1,θ(c | 1))

(c) Now, we like to simulate the first M-step of the EM algorithm. What will be the estimated values

of all the model parameters (which you identified in part (a)) that we obtain in this M-step? (5)

(Note that, we use the expected count only when the variable is unobserved in an example)

Solution:

10 parameters will get the updated values as follows:

θ(s) = P(S = 1) =
#{S = 1}

#K
=

4

8
= 0.5

θ(a) = P(A = 1) =
#{A = 1}

#K
=

4

8
= 0.5

θ(g | 00) = P(G = 1 | S = 0,A = 0) =
#{G = 1,S = 0,A = 0}

#{S = 0,A = 0} =
0

3
= 0.0

θ(g | 01) = P(G = 1 | S = 0,A = 1) =
#{G = 1,S = 0,A = 1}

#{S = 0,A = 1} =
1

1
= 1.0

θ(g | 10) = P(G = 1 | S = 1,A = 0) =
#{G = 1,S = 1,A = 0}

#{S = 1,A = 0} =
1

1
= 1.0

θ(g | 11) = P(G = 1 | S = 1,A = 1) =
#{G = 1,S = 1,A = 1}

#{S = 1,A = 1} =
3

3
= 1.0

θ(p | 0) = P(P = 1 | G = 0) =
#{G = 0}.E[P = 1]

#{G = 0} =
(1×1.0+2×0.0)

3
= 0.33

θ(p | 1) = P(P = 1 | G = 1) =
#{G = 1}.E[P = 1]

#{G = 1} =
(4×1.0+1×0.5)

5
= 0.9

θ(c | 0) = P(C = 1 | G = 0) =
#{G = 0}.E[C = 1]

#{G = 0} =
(1×1.0+2×0.0)

3
= 0.33

θ(c | 1) = P(C = 1 | G = 1) =
#{S = 1}.E[C = 1]

#{G = 1} =
(3×1.0+1×0.0+1×0.0)

5
= 0.7
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(d) Last, let us (again) simulate the second E-step of the EM algorithm. What a re the following

expectation values that will get calculated in this E-step? In particular, calculate the following: (2+2)

– E(p7 = 1 | s7,a7,g7,c7,θ) =?

– E(c8 = 1 | s8,a8,g8, p8,θ) =?

Solution:

∴ E(p7 = 1 | s7,a7,g7,c7,θ)

=
P(p7 = 1,s7,a7,g7,c7 | θ)

P(p7 = 1,s7,a7,g7,c7 | θ)+P(p7 = 0,s7,a7,g7,c7 | θ)

=
θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

θ(p7 = 1 | g7).θ(g7|s7,a7).θ(s7).θ(a7)+θ(p7 = 0 | g7).θ(g7|s7,a7).θ(s7).θ(a7)

=
0.9×1.0×0.5×0.5

1.0×1.0×0.5×0.5
= 0.9 = E(p7 = 1 | g7 = 1,θ(p | 1))

∴ E(c8 = 1 | s8,a8,g8, p8,θ)

=
P(c8 = 1,s8,a8,g8, p8 | θ)

P(c8 = 1,s8,a8,g8, p8 | θ)+P(c8 = 0,s8,a8,g8, p8 | θ)

=
θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

θ(c8 = 1 | g8).θ(g8|s8,a8).θ(s8).θ(a8)+θ(c8 = 0 | g8).θ(g8|s8,a8).θ(s8).θ(a8)

=
0.7×1.0×0.5×0.5

1.0×1.0×0.5×0.5
= 0.7 = E(c8 = 1 | g7 = 1,θ(c | 1))

Q11. [ Hidden Markov Models ] 10 marks

The following figure above presents two HMMs. States are represented by circles and transitions by

directed edges. In both, emissions are deterministic and listed inside the states (either A or B).

HMM−1

0.5

0.5

0.5

0.5

0.5
0.5A B

0.5

0.5

0.8

0.8

0.2

0.2

A B

HMM−2

Transition probabilities and starting probabilities are listed next to the relevant edges. For example,

in HMM-1 we have a probability of 0.5 to start with the state that emits A and a probability of 0.5 to

transition to the state that emits B if we are now in the state that emits A.

Notation: In the questions below, O100 = A means that the 100-th symbol emitted by an HMM is A.

Answer the following.

(a) Calculate P(O100 = A, O101 = A, O102 = A) for HMM-1 and HMM-2, respectively. (2+2)

Solution:

Note that, for HMM-1,

P(O100 = A,O101 = A,O102 = A)

= P(O100 = A,O101 = A,O102 = A,S100 = A,S101 = A,S102 = A),

since if we are not always in state A we will not be able to emit A.
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Given the Markov property, this can be written as:

P(O100 = A,O101 = A,O102 = A,S100 = A,S101 = A,S102 = A)

= P(O100 = A | S100 = A).P(S100 = A).

P(O101 = A | S101 = A).P(S101 = A | S100 = A).

P(O102 = A | S102 = A).P(S102 = A | S101 = A)

= 1×0.5×1×0.5×1×0.5 = 0.125

[ Here, since the model is fully symmetric, P(S100 = A) = 0.5. ]

Folowing similar lines in HMM-2, P(O100 = A,O101 = A,O102 = A) can be written as:

P(O100 = A,O101 = A,O102 = A,S100 = A,S101 = A,S102 = A)

= P(O100 = A | S100 = A).P(S100 = A).

P(O101 = A | S101 = A).P(S101 = A | S100 = A).

P(O102 = A | S102 = A).P(S102 = A | S101 = A)

= 1×0.5×1×0.8×1×0.8 = 0.32

(b) Calculate P(O100 = A, O101 = B, O102 = A, O103 = B) for HMM-1 and HMM-2. respectively. (2+2)

Solution:

For HMM-1, this can be expressed as:

P(O100 = A, O101 = B, O102 = A, O103 = B)

= P(O100 = A,O101 = B,O102 = A,O103 = B,S100 = A,S101 = B,S102 = A,S103 = B)

= P(O100 = A | S100 = A).P(S100 = A).

P(O101 = B | S101 = B).P(S101 = B | S100 = A).

P(O102 = A | S102 = A).P(S102 = A | S101 = B).

P(O103 = B | S103 = B).P(S103 = B | S102 = A)

= 1×0.5×1×0.5×1×0.5×1×0.5 = 0.0625

Similarly, for HMM-2,

P(O100 = A, O101 = B, O102 = A, O103 = B)

= P(O100 = A,O101 = B,O102 = A,O103 = B,S100 = A,S101 = B,S102 = A,S103 = B)

= P(O100 = A | S100 = A).P(S100 = A).

P(O101 = B | S101 = B).P(S101 = B | S100 = A).

P(O102 = A | S102 = A).P(S102 = A | S101 = B).

P(O103 = B | S103 = B).P(S103 = B | S102 = A)

= 1×0.5×1×0.2×1×0.2×1×0.2 = 0.004

(c) Assume you are told that a casino has been using one of the two HMMs to generate streams of

letters. You are also told that among the first 1000 letters emitted, 500 are As and 500 are Bs.

Can you tell which of the HMMs is being used by this casino? Explain. (2)

Solution:

While we saw in the previous part (b) that it is much more less likely to switch between A and

B in HMM-2, this is only true if we switch at every step. However, when aggregating over 1000

steps, since the two HMMs are both symmetric, both are likely to generate the same number of

As and Bs. So, the casino may have been using any of these HMMs.

— END —
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