Indian Institute of Technology Kharagpur Department of Computer Science and Engineering CS60050 : Machine Learning Spring 2021 | Short Test 2 (ALL Q&A) | Marks : 20 Date : 15-Mar-2021 (Monday) | Time : 8:30pm-9:00pm (30 min) Question-1: Which of the following are possible growth functions $m_H(N)$ for som e hypothesis set (N = number of training points/examples)? [Marks = 3] Choose ALL the correct options from the following. (i) $m_H(N) = 1 + N$ (ii) $\overline{m}_{H(N)} = 1 + N + N(N-1)/2$ (iii) $\overline{m}_{H(N)} = 1 + N + N(N-1)(N-2)$ (iv) $m_{\overline{H}}(N) = 2^N$ (v) m_ $\overline{H}(N)$ = 2^([\sqrt{N}]) $(vi) \overline{m} H(N) = 2^{(|N/2|)}$ Note: $\overline{x} = \lfloor n \rfloor$ (called the floor of n) is the highest integer value with $x \leq n$ Answer-1: (i) , (ii) , (iv) Explanation: We have only two cases for the growth function (let VC-dimension = d): either d = ∞ (infinite) and m_H(N) = 2^N for all N, or d is finite and m_H(N) \leq N^d +1. (i) If $m_H(N) = 1 + N$, we have d = 1 (as, $m_H(2) = 3 < 2^2$). So, $m_H(N) \le N^1 + 1$ for all \overline{N} , which is obviously the case here. In conclusion, m H(N) = 1 + N is a possible growth function. (ii) If $m_H(N) = 1 + N + N(N-1)/2$, we have d = 2 (as, $m_H(3) = 7 < 2^3$). So, $m_H(3) = 7 < 2^3$). N) $\leq N^2 + 1$ for all N, which is also the case as N ≥ 1 . In conclusion, m_H(N) = 1 + N + N(N - 1)/2 is a possible growth function. (iii) If $m_H(N) = 1 + N + N(N-1)(N-2)$, we have d = 1 (as, $m_H(2) = 3 < 2^2$). Cons equently, it must be the case that $m_H(N) \le N^1 + 1$ for all \overline{N} , which is not true (for N = 3 for example). In conclusion, $m_H(N) = 1 + N + N(N-1)(N-2)$ is NOT a po ssible growth function. (iv) Obviously $m_H(N) = 2^N$ is a possible growth function when $d = \infty$ (infinity). (v) If $m_H(N) = 2^{(\lfloor \sqrt{N} \rfloor)}$, we have d = 1 (as, $m_H(2) = 2 < 2^2$). Consequently, it must be the case that \dot{m} $\dot{H}(N) \leq N^1 + 1$ for all \overline{N} , which is not true (for N = 25 f or example). In conclusion, $m_H(N) = 2[\sqrt{N}]$ is NOT a possible growth function. (vi) If $mH(N) = 2^{(\lfloor N/2 \rfloor)}$, we have d = 0 (as, $mH(1) = 1 < 2^1$). Consequently, it must be the case that $m_H(N) \le N^\circ + 1 = 2$ for all N, which is not true (for N = 4 for example). In conclusion, $m_H(N) = 2[N/2]$ is NOT a possible growth function. Question-2: Suppose $m_H(N) = N + 1$. Determine the Generalization Bound (Ω) for Eout with at least 90% probability (confidence) when the number of training exam ples are 10000. [Marks = 2]

(In case of Real numbers as answer, write the approximated value upto THREE deci mal places after point.)

Answer-2: $\Omega = 0.1042782$ Explanation: Here, $1-\delta = 0.9$, N = 100, and m_H(N) = N + 1. We know that, Eout \leq Ein + Ω , where Generalization Bound, $\Omega = \sqrt{((8/N)\ln(4.m_H(2N)/\delta))}$. So, $\Omega = \sqrt{((8/10000)\ln(4.(2.10000+1)/0.1))} = 0.1042782.$ Question-3: For an hypothesis set (H) having break point 11, what is the minimu m sample size (i.e. number of training points/examples) do you need (as prescrib ed by the generalization bound) to have at least 95% probability (confidence) th at your generalization error is at most 0.05? [Marks = 2] Choose the correct option from the following. (i) 1000 (ii) 2.57251 × 10⁵ (iii) 4.52957 × 10⁵ $(iv) 2^{10} + 1$ Answer-3: (iii) 4.52957 × 10⁵ Explanation: Note that, the generalization error is bounded by $\Omega = \sqrt{((8/N)\ln(4.m_H(2N)/\delta))}$. S o, it suffices to make $\sqrt{((8/N)\ln(4.m_H(2N)/\delta))} \le \epsilon$. It follows that, $N \ge \sqrt{((8/\epsilon^2)\ln(4.m_H(2N)/\delta))}$ suffices to obtain generalization error at most ϵ (with probab ility/confidence at least 1- δ). This gives an implicit bound for the sample comp lexity N, since N appears on the both sides of the inequality. If we replace m_H (2N) by its polynomial upper bound based on VC-dimension (d), we get the final s imilar bound as, This implies, $N \ge \sqrt{((8/\epsilon^2)\ln(4.((2N)^d+1)/\delta))}$ So, as per above formula, we have the following implicit bound for the sample co mplexity N (with break point k = 11, so VC-dimension d = 10, ϵ = 0.05, and 1- δ = 0.95 implying $\delta = 0.95$), $N \ge \sqrt{((8/(0.05)^2)\ln(4.((2N)^{10}+1)/(0.05)))}$ To determine N, we will use an iterative process with an initial guess of N = 1000 in the RHS. We get N ≥ $\sqrt{((8/(0.05)^2) \ln (4.((2.1000)^{10}+1)/(0.05)))} \approx 2.57251 \times 10^5$. We then try the new value N = 2.57251 \times 10⁵ in the RHS and iterate this process, rapidly converging to an estimate of N \approx 4.52957 \times 10⁵. Question-4: Consider a simplified learning scenario. Assume that, the input dim ension is one. Assume that, the input variable x is uniformly distributed in the interval [-1, +1]. The data set consists of 2 points $\{x_1, x_2\}$ and assume that h e target function is $y = f(x) = x^2$. Thus, the full data set is $D = \{ (x_1, x_1^2) \}$ (x_2, x_2^2) }. The learning algorithm returns the line fitting these two points a s g (the hypothesis set, H, consists of functions of the form h(x) = ax+b). We a re interested in the test performance (Eout) of our learning system with respect to the squared error measure, the bias and the variance. Determine the following metrics. [Marks = $2 \times 4 = 8$] (i) average hypothesis function g'(x), (ii) out-of-sample error (Eout), (iii) bias (bias), and (iv) variance (var).

(In case of Real numbers as answer, write the approximated value upto THREE deci mal places after point.) Answer-4: (i) 0 , (ii) 0.533 , (iii) 0.2 , (iv) 0.333 Explanation: (i) We give the analytic expression for the average hypothesis function q'(x) be low. We have, $q(x) = E_D[q(x)]$ $= E_D[(y_1 - y_2)x/(x_1 - x_2) + (x_1y_2 - x_2y_1)/(x_1 - x_2)]$ = 1/4 -1 $\int_{-1}^{1} (x_1^2 - x_2^2)/(x_1 - x_2)dx_1dx_2 \cdot x$ $+ \frac{1}{4} - \frac{1}{1} \int_{-1}^{1} \frac{1}{(x_1 x_2^2 - x_2 x_1^2)} (x_1 - x_2) dx_1 dx_2$ = $\frac{1}{4} - \frac{1}{1} \int_{-1}^{1} \frac{1}{(x_1 + x_2)} dx_1 dx_2$. x $-\frac{1}{4} - 1 \int_{1}^{1} - 1 \int_{1}^{1} (x_1 x_2) dx_1 dx_2$ = 1/4. 0 - 1/4. 0 = 0 (ii) To compute E_D[Eout], we will first determine Eout, we get, Eout = $E_{x}[(q(x) - f(x))^{2}] = E_{x}[(ax + b - x^{2})]$ $= E_{x}[x^{4}] - 2a \cdot E_{x}[x^{3}] + (a^{2} - 2b) \cdot E_{x}[x^{2}] + 2ab \cdot E_{x}[x] + b^{2}$ = 1/4 -1 $\int^{1} x^{4}dx - 2a \cdot -1\int^{1} x^{3}dx + (a^{2} - 2b) \cdot -1\int^{1} x^{2}dx + 2ab \cdot -1\int^{1} x^{2}dx$ + b² $= 1/5 + (a^2 - 2b)/3 + b^2$ Then, we take the expectation with respect to D to get the test performance. Since $x_1^2 = ax_1 + b$ and $x_2^2 = ax_2 + b$, which gives as solution $a = (x_1 + x_2)$ and $b = (-X_1X_2).$ So, we replace a and b by $(x_1 + x_2)$ and $(-x_1x_2)$ respectively, we get, $E_D[Eout] = 1/5 + (1/3) \cdot E_D[(x_1 + x_2)^2 + 2x_1x_2] + E_D[x_1^2x_2^2]$ $= 1/5 + (1/3) \cdot (1/4) \cdot 1 \int_{-1}^{1} (x_1^2 + x_2^2 + 4x_1x_2) dx_1 dx_2$ + $1/4 - 1 \int_{1}^{1} - 1 \int_{1}^{1} x_{1}^{2} x_{2}^{2} dx_{1} dx_{2}$ $= 1/5 + (1/3) \cdot (1/4) \cdot (8/3) + (1/4) \cdot (4/9) = 8/15$ (iii) To compute bias, we first have, $bias(x) = (q'(x) - f(x))^2 = f(x)^2 = x^4$; then we get, bias (bias) = $E_x[x^4] = 1/2 - 1 \int_1^1 x^4 dx = 1/5$ (iv) Finally, we compute the variance, we first have, $var(x) = E_D[(g(x) - g'(x))^2] = E_D[a^2x^2 + 2abx + b^2]$ $= E_D[a^2] \cdot x^2 + 2 \cdot E_D[ab] \cdot x + E_D[b^2] \\= E_D[(x_1 + x_2)^2] \cdot x^2 - 2 \cdot E_D[(x_1 + x_2)x_1x_2] \cdot x + E_D[x_1^2x_2^2] \\= E_D[x_1^2 + 2x_1x_2 + x_2^2] \cdot x^2 - 2 \cdot E_D[x_1^2x_2 + x_1x_2^2] \cdot x + E_D[x_1^2x_2^2]$ $= \overline{1/4} - 1 \int_{-1}^{1} (x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2}) dx_{1} dx_{2} . x^{2}$ $-\frac{2}{4} - 1\int^{1} - 1\int^{1} (x_{1}^{2}x_{2} + x_{1}x_{2}^{2})dx_{1}dx_{2} . x + \frac{1}{4} - 1\int^{1} - 1\int^{1} x_{1}^{2}x_{2}^{2}dx_{1}dx_{2}$ = $(1/4).(4/3 + 0 + 4/3) . x^2 - 0 . x + (1/4).(4/9) = 2x^2/3 + 1/9;$ then we get, variance (var) = $E_x[2x^2/3 + 1/9]$ = $(2/3) \cdot (1/2) - 1 \int_{1}^{1} x^2 dx + 1/9 = 1/3$ Question-5: Consider the feature transform $z = [L_0(x), L_1(x), L_2(x)]^{t}$ with Lege ndre polynomials and the linear model $h(x) = w^{t}z$. For the regularized hypothesis with $w = [+1, -1, +1]^{t}$, what is h(x) explicitly as a function of x? [Marks = 2 1 (Notation: [..]^t denotes transpose of the matrix [..]) Choose the correct option from the following. (i) 1 - x (ii) $(3/2)x^2 - x + 1/2$ (iii) $3x^2 - x$ $(iv) (5/2)x^3 - (3/2)x^2 - (1/2)x + 1/2$ Answer-5: (ii) $(3/2)x^2 - x + 1/2$

Explanation: $L_0(x) = 1$, $L_1(x) = x$, $L_2(x) = (1/2) \cdot (3x^2 - 1)$ $\begin{bmatrix} L_0(\mathbf{X}) \end{bmatrix}$ We may write $h(x) = [+1 - 1 + 1] | L_1(x) | = L_0(x) - L_1(x) + L_2(x)$ $[L_2(\mathbf{X})]$ $= 1 - x + (1/2) \cdot (3x^2 - 1)$ $= (3/2)x^2 - x + 1/2$ Question-6: You have a data set with 100 data points. You have 100 models each with VC dimension 10. You set aside 25 data points for validation. You select th e model which produced minimum validation error of 0.25. What is the bound on th e out-of-sample error for this selected function/model? [Marks = 2] Choose the correct option from the following. (i) Eout(q_m^*) $\leq 0.25 + \sqrt{[(1/50).ln(200/\delta)]}$ with probability $\geq (1-\delta)$ (ii) Eout(g_m*) ≤ 0.25 + $\sqrt{[(1/25).ln(100/6)]}$ with probability ≥ (1-6) (iii) Eout(g_m *) ≤ 0.25 + $\sqrt{[ln(100)/25]}$ (iv) Eout $(q_m^*) \le 0.25 + \sqrt{[ln(200)/50]}$ Answer-6: (i) Eout(q_m^*) $\leq 0.25 + \sqrt{(1/50) \cdot \ln(200/\delta)}$ with probability $\geq (1-\delta)$ Explanation: Here, we have a data set with N = 100 points and a validation set of K = 25 poin ts. We consider M = 100 models H_1 , H_2 , ..., H_{100} each with VC-dimension d = 10. In the first case, each model H_m gives birth to a final hypothesis g_m generated on the N - K = 75 training points; from these hypotheses, we select the one wit h the minimum validation error g_m^{-*} of 0.25. We know that, Eout $(g_m^*) \leq \text{Eout}(g_m^{-*}) \leq \text{Eval}(g_m^{-*}) + \sqrt{[(1/2K)ln(2M/\delta)]}$ with probability $\geq (1-\delta)$ where q_m^* is the chosen final hypothesis trained on the entire data set, since w e selected our final hypothesis g_m^{-*} from a finite hypothesis set Hval = { g_1^{-} , g 2^- , ..., g_{100}^- . So, a bound on the out-of-sample error is given by, Eout(g_m^{-*}) \leq Eval(g_m^{-*}) + $\sqrt{[(1/2K)\ln(2M/\delta)]}$ = $0.25 + \sqrt{(1/50) \cdot \ln(200/\delta)}$ with probability $\geq (1-\delta)$ implies, Eout(q_m^*) $\leq 0.25 + \sqrt{((1/50) \cdot \ln(200/\delta))}$ with probability $\geq (1-\delta)$ Question-7: Regarding bias and variance, which of the following statements are TRUE? (Here 'high' and 'low' are relative to the ideal model.) [Marks = 1] Choose ALL the correct options from the following. (i) Models which overfit have a high bias. (ii) Models which overfit have a low bias. (iií) Models which underfit have a high variance. (iv) Models which underfit have a low variance. Answer-7: (ii) and (iv)