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Question-1:  Which of the following are possible growth functions m_H(N) for som
e hypothesis set (N = number of training points/examples)?  [Marks = 3]
Choose ALL the correct options from the following.
(i) m_H(N) = 1 + N
(ii) m_H(N) = 1 + N + N(N-1)/2
(iii) m_H(N) = 1 + N + N(N-1)(N-2)
(iv) m_H(N) = 2^N
(v) m_H(N) = 2^(⌊√N⌋)
(vi) m_H(N) = 2^(⌊N/2⌋)
Note: x = ⌊n⌋ (called the floor of n) is the highest integer value with x ≤ n

Answer-1:  (i) , (ii) , (iv)

Explanation:
We have only two cases for the growth function (let VC-dimension = d):
either d = ∞ (infinite) and m_H(N) = 2^N for all N, or d is finite and m_H(N) ≤ 
Nᵈ +1.

(i) If m_H(N) = 1 + N, we have d = 1 (as, m_H(2) = 3 < 2²). So, m_H(N) ≤ N¹ + 1 
for all N, which is obviously the case here. In conclusion, m_H(N) = 1 + N is a 
possible growth function.

(ii) If m_H(N) = 1 + N + N(N−1)/2, we have d = 2 (as, m_H(3) = 7 < 2³). So, m_H(
N) ≤ N² + 1 for all N, which is also the case as N ≥ 1. In conclusion, m_H(N) = 
1 + N + N(N −1)/2 is a possible growth function.

(iii) If m_H(N) = 1 + N + N(N-1)(N-2), we have d = 1 (as, m_H(2) = 3 < 2²). Cons
equently, it must be the case that m_H(N) ≤ N¹ + 1 for all N, which is not true 
(for N = 3 for example). In conclusion, m_H(N) = 1 + N + N(N-1)(N-2) is NOT a po
ssible growth function.

(iv) Obviously m_H(N) = 2^N is a possible growth function when d = ∞ (infinity).

(v) If m_H(N) = 2^(⌊√N⌋), we have d = 1 (as, m_H(2) = 2 < 2²). Consequently, it 
must be the case that m_H(N) ≤ N¹ + 1 for all N, which is not true (for N = 25 f
or example). In conclusion, m_H(N) = 2⌊√N⌋ is NOT a possible growth function.

(vi) If mH(N) = 2^(⌊N/2⌋), we have d = 0 (as, mH(1) = 1 < 2¹). Consequently, it 
must be the case that m_H(N) ≤ N⁰ +1 = 2 for all N, which is not true (for N = 4
for example). In conclusion, m_H(N) = 2⌊N/2⌋ is NOT a possible growth function.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-2:  Suppose m_H(N) = N + 1. Determine the Generalization Bound (Ω) for 
Eout with at least 90% probability (confidence) when the number of training exam
ples are 10000.  [Marks = 2]
(In case of Real numbers as answer, write the approximated value upto THREE deci
mal places after point.)



Answer-2:  Ω = 0.1042782

Explanation:
Here, 1-δ = 0.9, N = 100, and m_H(N) = N + 1.
We know that, Eout ≤ Ein + Ω,

where Generalization Bound, Ω = √((8/N)ln(4.m_H(2N)/δ)).
So, Ω = √((8/10000)ln(4.(2.10000+1)/0.1)) = 0.1042782.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-3:  For an hypothesis set (H) having break point 11, what is the minimu
m sample size (i.e. number of training points/examples) do you need (as prescrib
ed by the generalization bound) to have at least 95% probability (confidence) th
at your generalization error is at most 0.05?  [Marks = 2]
Choose the correct option from the following.
(i) 1000
(ii) 2.57251 × 10⁵
(iii) 4.52957 × 10⁵
(iv) 2¹⁰ + 1

Answer-3:  (iii) 4.52957 × 10⁵

Explanation:
Note that, the generalization error is bounded by Ω = √((8/N)ln(4.m_H(2N)/δ)). S
o, it suffices to make √((8/N)ln(4.m_H(2N)/δ)) ≤ ε. It follows that, N ≥ √((8/ε²
)ln(4.m_H(2N)/δ)) suffices to obtain generalization error at most ε (with probab
ility/confidence at least 1-δ). This gives an implicit bound for the sample comp
lexity N, since N appears on the both sides of the inequality. If we replace m_H
(2N) by its polynomial upper bound based on VC-dimension (d), we get the final s
imilar bound as, 
This implies, N ≥ √((8/ε²)ln(4.((2N)^d+1)/δ))

So, as per above formula, we have the following implicit bound for the sample co
mplexity N (with break point k = 11, so VC-dimension d = 10, ε = 0.05, and 1-δ =
0.95 implying δ = 0.95),

N ≥ √((8/(0.05)²)ln(4.((2N)¹⁰+1)/(0.05)))

To determine N, we will use an iterative process with an initial guess of N = 10
00 in the RHS. We get
N ≥ √((8/(0.05)²)ln(4.((2.1000)¹⁰+1)/(0.05))) ≈ 2.57251 × 10⁵.

We then try the new value N = 2.57251 × 10⁵ in the RHS and iterate this process,
rapidly converging to an estimate of N ≈ 4.52957 × 10⁵.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-4:  Consider a simplified learning scenario. Assume that, the input dim
ension is one. Assume that, the input variable x is uniformly distributed in the
interval [-1, +1]. The data set consists of 2 points {x₁, x₂} and assume that h

e target function is y = f(x) = x². Thus, the full data set is D = { (x₁, x₁²) ,
(x₂, x₂²) }. The learning algorithm returns the line fitting these two points a

s g (the hypothesis set, H, consists of functions of the form h(x) = ax+b). We a
re interested in the test performance (Eout) of our learning system with respect
to the squared error measure, the bias and the variance.

Determine the following metrics.  [Marks = 2 x 4 = 8]
(i) average hypothesis function g'(x),
(ii) out-of-sample error (Eout),
(iii) bias (bias), and
(iv) variance (var).



(In case of Real numbers as answer, write the approximated value upto THREE deci
mal places after point.)

Answer-4:  (i) 0 , (ii) 0.533 , (iii) 0.2 , (iv) 0.333

Explanation:
(i) We give the analytic expression for the average hypothesis function g'(x) be
low. We have,
g(x) = E_D[g(x)]

= E_D[(y₁ - y₂)x/(x₁ - x₂) + (x₁y₂ - x₂y₁)/(x₁ - x₂)]
= 1/4 -₁∫¹ -₁∫¹ (x₁² - x₂²)/(x₁ - x₂)dx₁dx₂ . x

+ 1/4 -₁∫¹ -₁∫¹ (x₁x₂² - x₂x₁²)/(x₁ - x₂)dx₁dx₂
= 1/4 -₁∫¹ -₁∫¹ (x₁ + x₂)dx₁dx₂ . x

- 1/4 -₁∫¹ -₁∫¹ (x₁x₂)dx₁dx₂
= 1/4 . 0 - 1/4 . 0 = 0

(ii) To compute E_D[Eout], we will first determine Eout, we get,
Eout = Eₓ[(g(x) - f(x))²] = Eₓ[(ax + b - x²)]

= Eₓ[x⁴] - 2a . Eₓ[x³] + (a² - 2b) . Eₓ[x²] + 2ab . Eₓ[x] + b²
= 1/4 -₁∫¹ x⁴dx - 2a . -₁∫¹ x³dx + (a² - 2b) . -₁∫¹ x²dx + 2ab . -₁∫¹ x²dx 

+ b²
= 1/5 + (a² - 2b)/3 + b²

Then, we take the expectation with respect to D to get the test performance.
Since x₁² = ax₁ + b and x₂² = ax₂ + b, which gives as solution a = (x₁ + x₂) and
b = (-x₁x₂).

So, we replace a and b by (x₁ + x₂) and (-x₁x₂) respectively, we get,
E_D[Eout] = 1/5 + (1/3) . E_D[(x₁ + x₂)² + 2x₁x₂] + E_D[x₁²x₂²]

= 1/5 + (1/3).(1/4)-₁∫¹ -₁∫¹ (x₁² + x₂² + 4x₁x₂)dx₁dx₂
+ 1/4 -₁∫¹ -₁∫¹ x₁²x₂²dx₁dx₂

= 1/5 + (1/3).(1/4).(8/3) + (1/4).(4/9) = 8/15

(iii) To compute bias, we first have, bias(x) = (g'(x) - f(x))² = f(x)² = x⁴;
then we get, bias (bias) = Eₓ[x⁴] = 1/2 -₁∫¹ x⁴dx = 1/5

(iv) Finally, we compute the variance, we first have,
var(x) = E_D[(g(x) - g'(x))²] = E_D[a²x² + 2abx + b²]

= E_D[a²] . x² + 2 . E_D[ab] . x + E_D[b²]
= E_D[(x₁ + x₂)²] . x² - 2 . E_D[(x₁ + x₂)x₁x₂] . x + E_D[x₁²x₂²]
= E_D[x₁² + 2x₁x₂ + x₂²] . x² - 2 . E_D[x₁²x₂ + x₁x₂²] . x + E_D[x₁²x₂²]
= 1/4 -₁∫¹ -₁∫¹ (x₁² + 2x₁x₂ + x₂²)dx₁dx₂ . x²

- 2/4 -₁∫¹ -₁∫¹ (x₁²x₂ + x₁x₂²)dx₁dx₂ . x + 1/4 -₁∫¹ -₁∫¹ x₁²x₂²dx₁dx₂
= (1/4).(4/3 + 0 + 4/3) . x² - 0. x + (1/4).(4/9) = 2x²/3 + 1/9;

then we get, variance (var) = Eₓ[2x²/3 + 1/9]
= (2/3).(1/2) -₁∫¹ x²dx + 1/9 = 1/3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-5:  Consider the feature transform z = [L₀(x), L₁(x), L₂(x)]ᵗ with Lege
ndre polynomials and the linear model h(x) = wᵗz. For the regularized hypothesis
with w = [+1, -1, +1]ᵗ, what is h(x) explicitly as a function of x?  [Marks = 2

]
(Notation: [..]ᵗ denotes transpose of the matrix [..])
Choose the correct option from the following.
(i) 1 - x
(ii) (3/2)x² - x + 1/2
(iii) 3x² - x
(iv) (5/2)x³ - (3/2)x² - (1/2)x + 1/2

Answer-5:  (ii) (3/2)x² - x + 1/2



Explanation:
L₀(x) = 1, L₁(x) = x, L₂(x) = (1/2).(3x² - 1)

⌈ L₀(x) ⌉
We may write h(x) = [ +1 -1 +1 ] | L₁(x) | = L₀(x) - L₁(x) + L₂(x)

⌊ L₂(x) ⌋
= 1 - x + (1/2).(3x² - 1)
= (3/2)x² - x + 1/2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-6:  You have a data set with 100 data points. You have 100 models each 
with VC dimension 10. You set aside 25 data points for validation. You select th
e model which produced minimum validation error of 0.25. What is the bound on th
e out-of-sample error for this selected function/model?  [Marks = 2]
Choose the correct option from the following.
(i) Eout(gₘ*) ≤ 0.25 + √[(1/50).ln(200/δ)] with probability ≥ (1-δ)
(ii) Eout(gₘ*) ≤ 0.25 + √[(1/25).ln(100/δ)] with probability ≥ (1-δ)
(iii) Eout(gₘ*) ≤ 0.25 + √[ln(100)/25]
(iv) Eout(gₘ*) ≤ 0.25 + √[ln(200)/50]

Answer-6:  (i) Eout(gₘ*) ≤ 0.25 + √[(1/50).ln(200/δ)] with probability ≥ (1-δ)

Explanation:
Here, we have a data set with N = 100 points and a validation set of K = 25 poin
ts. We consider M = 100 models H₁, H₂, ..., H₁₀₀ each with VC-dimension d = 10.
In the first case, each model Hₘ gives birth to a final hypothesis gₘ⁻ generated
on the N − K = 75 training points; from these hypotheses, we select the one wit

h the minimum validation error gₘ⁻* of 0.25. We know that,
Eout(gₘ*) ≤ Eout(gₘ⁻*) ≤ Eval(gₘ⁻*) + √[(1/2K)ln(2M/δ)] with probability ≥ (1-δ)
where gₘ* is the chosen final hypothesis trained on the entire data set, since w
e selected our final hypothesis gₘ⁻* from a finite hypothesis set Hval = {g₁⁻, g
₂⁻, ..., g₁₀₀⁻}. So, a bound on the out-of-sample error is given by,
Eout(gₘ⁻*) ≤ Eval(gₘ⁻*) + √[(1/2K)ln(2M/δ)]

= 0.25 + √[(1/50).ln(200/δ)] with probability ≥ (1-δ)
implies, Eout(gₘ*) ≤ 0.25 + √[(1/50).ln(200/δ)] with probability ≥ (1-δ)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Question-7:  Regarding bias and variance, which of the following statements are 
TRUE? (Here 'high' and 'low' are relative to the ideal model.)  [Marks = 1]
Choose ALL the correct options from the following.
(i) Models which overfit have a high bias.
(ii) Models which overfit have a low bias.
(iii) Models which underfit have a high variance.
(iv) Models which underfit have a low variance.

Answer-7:  (ii) and (iv)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


