
Machine Learning (CS60050) Spring 2020-2021

Instructor: Dr. Aritra Hazra

Scribed by: Urvashi Kumawat(20CS60R51)
Sandeep Shahu(20CS60R50)

31 March 2021

1 Introduction to Reinforcement Learning

We have seen two types of Learning so far that we generally use are as follows:
1: Supervised Learning
There is always a teacher who is going to guide us means given a input we

are also having the output associated with it, formally In a supervised learning
model, the algorithm learns on a labeled data-set, providing an answer key that
the algorithm can use to evaluate its accuracy on training data.

2: Unsupervised Learning
There is no as such teacher who can guide us instead we need to find out

certain kind of Clustering here we are provided the unlabeled data that the
algorithm tries to make sense of by extracting features and patterns on its own.

1.1 Reinforcement learning (RL)

Reinforcement learning is one of three basic machine learning paradigms, along-
side supervised learning and unsupervised learning.This is mixture of the above
two learning, we don’t have immediate feedback but not the case that we don’t
have any instead we have a delayed feedback over here more formally this is an
area of machine learning concerned with how intelligent agents ought to take
actions in an environment in order to maximize the notion of cumulative reward.

Reinforcement Learning: It depicts this delayed feedback that get reinforced
into different positions of the game and therefore we try to accumulate the
cumulative feedback to maximize our feedback.

it is going to follow sequence of steps to reach to the goal and in ML we call
it as a Policy, for Example in a Game at the board position in chess we sense
the state and take the action now here we won’t get a immediate reward for this
because there can be other move that can give more reward so here by sensing
a state and taking action we get reward from looking at the board position, for

1

Figure 1: Reinforcement Learning with MDP setup

formalise such kind of setup we have set of environment states through which
environment moves S1 → S2 → S3

It is going to follow MarMarkov Decision Process(MDP)Formally, an MDP
is used to describe an environment for reinforcement learning, where the envi-
ronment is fully observable.

P (st|s(t− 1), a(t− 1))
P (rt|s(t− 1), a(t− 1))
now under this setup our challenge is to learn a policy, so that we could guide

the agent to reach its goal that means we want to learn the policy: Π : S → A

Now as in supervised Learning we have data-set with the output < X1, Y1 >
.... < Xn, Yn > here also we have the same structure < S1, a1 >, < Sn, an >
but instead of actual output we have a immediate reward r1, r2..rn associated
with the current action that guides us to reach to the actual goal,

here if we can find out all possible paths then it will be a search problem
instead but that is not possible for infinite state space like in chess.

2

Figure 2: RL challenges and Policy

These are the challenges we have in RL:
1: Outcome of the action is uncertain. (Ex: in Backgammon we make a

movie followed by a dice)
2: Perfect sense of Environment (means how environment will react over it)
3: Reward is Delayed (Ex in chess we play but nothing captured by that

action so sometimes reward is Stochastic as well)
4: Reward is Stochastic.
5: How Much you train.

3

Figure 3: Grid Example of RL

1.1.1 Policy: {Π : S → A}

Pathway to reach the goal, as reward is delayed so some how we need to embed
the reward through the pathway, More formally,

A policy defines the learning agent’s way of behaving at a given time. policy
is a mapping from states of the environment to actions to be taken when in
those states.

so We can write this policy as
Π :→ (a0, a1....., an) by By taking any action we will get cumulative reward

while moving into state Si that can be written by this value function as follows:
V π(S) = ri + γri+1 + γ2ri+2 + ...
that can be be written precisely as

=
∑∞
i=0 γ

iri
we can also write it as: Π∗(S) = arg max

a
[r(S, a) + γV ∗(δ(S, a)]

Now we can analyse the value function by this example: In this example we
are trying to reach the goal state, here we will use the value function to move
into any state which will give us highest cumulative reward, now if we start
filling from goal state we keep on filling this by BFT(Breath First Traversal).

as in this figure we can see that for moving into goal state from S2 we will
get the reward of 100, now if we calculate the reward of moving into S1 by using
this value function,

4

V ∗(S) = 0 + 0.9 max {0, 0, 100} = 90
And so on we can fill this entire grid by traversing Breath First, but the

constraint for this calculation is that we need to know these two r(S, a) and
δ(S, a) but we in actual infinite state space we can not know this for all and not
possible to fill the entire grid.

There comes the learning where we can’t have these two parameters r(S, a)
and δ(S, a) for whole state space because the state space is huge over here.

As we can see this grid example where we can just have few states given
with the reward as < Si, ri >and we start from them and try to find the path
to Goal and we keep on doing this exploration means we are given the states
and set of moves depending on that we need to learn now.

As because of uncertainty of the model, the environment may have prob-
lem of going to a certain state not a deterministic flow, it is not always on
MDP, it sometimes a partially observed (Where actions are not-deterministic in
producing outcome).

1.1.2 Q-Learning

This is Most popular RL paradigm, formally, Q-learning is a model-free re-
inforcement learning algorithm to learn the value of an action in a particular
state. It does not require a model of the environment, and it can handle prob-
lems with stochastic transitions and rewards without requiring adaptations. By
this example of the Grid we can write these following equations:

Π∗(S) = arg max
a

[r(S, a) + γV ∗(δ(S, a)]

here this r(S, a) is immediate reward and γV ∗(δ(S, a) discounted reward
that we will make over this transition,

V (S1) = r(S1, a) + γV (S2) + γ2V (G) and so on we can write this for each
state that even have this matrix representation:

V (S1)
.
.

V (S5)

 =


.
.
R
.

 + γ


V
V
.
.


here Q(S, a) ← Best Action ’a’ at state S
Π∗(S) = arg max

a
Q(S, a)

5

Figure 4: Q-Learning

1.1.3 Convergence in Q-Learning

a reinforcement learning algorithm is considered to converge when the learning
curve gets flat and no longer increases. Q-Learning has been proven to converge
towards the optimal solution.

These are some conditions for proving the convergence:
1: Actions are Deterministic
2: |r(S, a)| < C C is a constant
3: Infinitely often visit of each state

1.1.4 Q-Learning Math

Q̂(S, a) = r(S, a) + γV ∗(δ(S, a))
= r(S, a) + γmax

a
Q̂(δ(S, a), a

′
)

As we know that δ(S, a) = S
′

Q̂(S, a) = max
a
Q̂(S

′
, a

′
) as we can see that this equation for Q̂ is a recursive

equation so it is kind of dynamic approach, we recursively keep on exploring
and update the reward for state until we converge.

6

Figure 5: Convergence and Q-Learning Math

1.1.5 Exploration vs. Exploitation

The Q-learning algorithm does not specify what the agent should actually do.
The agent learns a Q-function that can be used to determine an optimal action.
There are two things that are useful for the agent to do:

exploit the knowledge that it has found for the current state s by doing one
of the actions a that maximizes Q[s,a].

explore in order to build a better estimate of the optimal Q-function. That
is, it should select a different action from the one that it currently thinks is best.

It may be the case that We won’t even explore the portion of the state space
that is kind of locally optimal policy, for that we will gradually decrease this
chances of choosing the same path by using some constant K, so we can use this
Q-Function like this:

⇒ Q̂/K here we can change the value of ′K ′ in each epoch
accordingly.

This scribe is based on lecture taught by Prof. Aritra Hazra on 31-March-2021 in Machine
Learning(CS60050) course.
All the figures in this document are taken from Handout-14a

7

