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1 RBF centers and Support Vectors

Full name of RBF is ”Radial Basis Function”. Till now every example of trainig
data plays a part to build hypothesis. what if to a point, a nearby points play more
part to shaping or classifying the level of that point rather than tha farthest point.
So we want to make such a model.

A radial basis function (RBF) is a real-valued function ϕ whose value depends
only on the distance between the input and some fixed point, either the origin, so
that ϕ(x) = ϕ(‖x‖), or some other fixed point c, called a center, so that ϕ(x) = ϕ(‖x− c‖).
Any function ϕ that satisfies the property ϕ(x) = ϕ(‖x‖) is a radial function. The
distance is usually Euclidean distance, although other metrics are sometimes used.
They are often used as a collection {ϕk}k which forms a basis for some function
space of interest, hence the name.

Radial basics is = ε(−γ.|x−xn|
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In above matrix 1st matrix φ of size n*n is the matrix of radial basis , which is

invertible. and 2nd matrix w is the matrix of weight. and output matrix y is the
matrix of outcomes.
Hence w=φ−1 y (exact interpolation)
here if γ is large then gaussian curve will be much more steeper and if γ is small it
will be much smoother.

RBF as a model can be applied for both linear regression as well as linear classi-
fication quite easily. and it is a good model because it has more influence of nearer
points rather than the farther points.
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Figure 1: Effect of γ on gaussian curve

1.1 Nearest neighbour

Figure 2: 1-NN

In this we have to choose K - centers where k ≤≤ N , suppose µ1, µ2, ....µk and

h(x) =

K∑
k=1

wke
(−γ||x−µk||2) (1)

The question is how we choose µk and wk while learning from the set of data points
given to us. Given data points = x1, x2, .....xn and classes that i wish to do is
S1, S2, S3...Sk My objective function with respect to this is - first of all minimize
the distance of all the points with some center k within a particular class, means we
have to minimize inter cluster distance that is

min
K∑
k=1

∑
xn∈Sk

(||xn − µk||2) (2)

Computationally , it is np-hard.
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1.2 Support vactors

Figure 3: Support vectors and RBF centers

Let us now compare support vectors with the RBF centers. In figure 3, we can
see 9 support vectors and 9 RBF centers on the left and right side respectively for
the same dataset. The support vectors are trying to find out a separating hyper
plane between the 2 labels while the RBF centers are trying to divide the dataset
into different clusters in an unsupervised manner. The RBF centers are created
without considering the labels (yn). Let us see how RBF centers can also be used
to determine the labels.

If we have K RBF centers (µ1 to µK) and and we want to approximate yn for
the nth instance then we need to choose K weights such that equation 3 holds. We
can only approximate yn as some of the clusters will contain mixed data points
from both labels. We could put an equal sign in equation 3 if all the clusters were
uniform. We can see that if the margin is bigger in getting the support vectors then
the clusters will be more disjoint in terms of the labels and i.e. they will be more
uniform.

K∑
k=1

wke
(−γ||xn−µk||2) ≈ yn (3)

We need equation 3 to hold for all N instances in the dataset. So, we have N
equations and K unknowns. The matrix format for this is shown in equation 4.
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2) ... e(−γ||x1−µK ||

2)

e(−γ||x2−µ1||
2) ... e(−γ||x2−µK ||

2)

. . .

. . .

e(−γ||xN−µ1||
2) ... e(−γ||xN−µK ||

2)



w1

w2

.

.
wk

 ≈

y1
y2
.
.
yk

 (4)

3



In equation 4, left matrix in the L.H.S is the matrix of radial basis (φ), the right
matrix in the L.H.S is the weight matrix (w) and the matrix in the R.H.S is the
outcome matrix (y).

If φTφ is invertible then using pseudo inverse we can determine w using the
below equation:

w = φTφ
−1
φT y (5)

2 RBF network

Figure 4: RBF network

Now let us look at RBF as a network. In figure 4, we have X in the first level
and in the second level, a basis function φ acts over x with a distance of ||x− µ1||.
Another basis function acts with a distance of ||x− µ2|| and so on up-to ||x− µK ||.
The φ function applies the operation e−γ(a) for the input a given to it. In the second
layer, we have the weights w1, w2, . . . , wK and finally in the third level, the weights
are composed using a sum unit and the hypothesis h(x) is produced.

Now let us compare this RBF network with a traditional neural network as shown
in figure 5. Both the RBF netowrk and the neural network consists of 2 layers and
applies the non-linear functions φ and sigmoid respectively over their input.
The neural network consists of multiple weights and it applies backpropagation al-
gorithm to learn them.
As the basis function used in RBF network is a complicated one, we cannot apply
backpropagation algorithm their. Instead we learn the w and µ values iteratively
while minimizing the error.
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Figure 5: Comparing RBF network with neural netwrok

In the traditional neural network also the backpropagation algorithm tries to mini-
mize the error.

We can also look at support vector machine as a 2 layer network where in the
first layer we get the support vectors and in the second layer we get the final margin.

So, we can see that there is a resemblance of the RBF network with the neural
network. The traditional neural network have a probabilistic interpretation of the
non-linear sigmoid layer while the RBF network has a Gaussian interpretation of its
non-linear layer where the nearer data points have more influence on the input.

3 Choosing γ

The γ has an impact on everything. So, we need to choose good value for it. We can
do this using EM algorithm (EM stands for Expectation Maximization) as mixture
of Gaussians. We can solve this in 2 steps as:

1. Fix γ and solve w1, w2, . . . , wK

2. For w1, w2, . . . , wK , minimize the error with respect to γ

These 2 steps are done iteratively until we converge.

We may choose multiple γ values as well where for some set of points the curve
will be more flatter and for some other set of points the curve will be more steeper.
So, we will need to fix γ1, γ2, . . . , γ3 and perform the above 2 steps until we converge
to some local minima. Convergence is guaranteed as we have a fixed set of points.

4 RBF as Kernel

RBF can also be applied in terms of kernels as shown in equation 6 and explained
in previous lecture:

K(x,X ′) = e−γ||X−X
′||2 (6)
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RBF was actually invented to be used as a kernel and later people found out
that how to get learning models from the Gaussian function.

If we use equation 6 in the SVM equation then the SVM equation will boil down
to what is shown in figure 6.

Figure 6: RBF kernel in SVM equation

This is quite similar to the what we did in RBF classification. Figure 7 compares
the RBF classification equation with the SVM equation. These two methods are
solving the same optimization problem but they follow different maximization or
minimization criteria and produce different kinds of separating boundary.

Figure 7: Comparing the SVM equation with the RBF classification equation

5 RBF as Regularizer

Regularization tries to find smooth hypothesis. The smoothness can be expressed
in terms of the kth derivative of the hypothesis with respect to the data points i.e.

∂kh

∂xk

.
The more abrupt are the derivatives, less smooth is the hypothesis h(x).

When we want to use interpret RBF as a regularizer, we would obviously want
to minimize the error which can be expressed as minimizing the below term:

N∑
n=1

(h(x)− yn)2

We also need to consider the regularization parameter λ. and in order to bring
smoothness, we also need to minimize ∂kh

∂xk
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So, when we combine all this, we get equation 7 as our error function that we
have to minimize.

E =
N∑
n=1

(h(x)− yn)2 + λ
∞∑
k=0

ak

∫ ∞
−∞

(
∂kh

∂xk
)

2

dx (7)

Minimizing the error function of equation 7 minimizes the error as well as the
abruptness of the hypothesis. Depending on the regularization constant (λ), we will
get a smoother hypothesis directly from RBF as it can be derived that when we try
to solve equation 7 by minimizing the error, the hypothesis finally becomes an RBF.

6 Summary

RBF is a very generic model:

1. It can be used for regression and as well as classification.

2. We can also use RBF for clustering. RBF can be represented as a 2 layer
network where it resembles the traditional neural network.

3. Traditionally, RBF has been used in SVMs to form the kernels.

4. RBF is very smooth in terms of building a hypotheses and it is a very good
regularization function.
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