
CS60050 - Machine Learning (Spring 2021)
Instructor Dr. Aritra Hazra

ML Scribe of March 17, 2021

Sreyasree Mandal (20CS60R23)
Somi Vishnoi(20CS60R25)

March 19, 2021

1 Previous class overview
The discussion started with Ensemble Technique: Simplify the problem with a
binary classifier. Binary Classifier is a hypothesis function from the input space
to +1 or -1. Binary Classifier, h : x→ [+1, -1]. It is either ‘yes’ or ‘no’. The
whole goal of learning is to minimize in-sample error. Considering the proba-
bility of error lies within 0.0 and 1.0. For example, if a flip a coin, the error will
be 0.5. If it is a strong classifier, then the error lies near to 0.0. If it is a weak
classifier, then the error will be nearer to on the left side of 0.5

Figure 1: Type of Classifier

2 Goal of Ensemble Learning
The goal is to first create a set of weak classifiers and then among all the weak
classifiers, we take a vote and create a hypothesis, H. We call H as the strong

1



classifier. This entire process is called Ensemble learning. We thought of such a
process because though our classifier is weak, suppose a space contains 3 classi-
fiers which go wrong.

2.1 Examples
Let say we have a space containing 3 weak classifiers that go wrong Scenario 1
with three classifiers as shown in the image. There is a first space in which first
classifier is wrong, a space 2 in which second classifier is wrong, then we have
a third space in which our third classifier is wrong. If we get such an indepen-
dence, then our ensembling will be strong.

Figure 2: Hypothesis space

Now consider scenario 2: overlapping of spaces. We take a vote on the sign of
the performance of the first classifier, performance of second classifier, and per-
formance of third classifier. Each of them can take a plus (+) or a minus (-) be-
cause they are binary classifiers. It means result will be the sign of the two clas-
sifiers agreeing with each other. The shaded orange regions are the bad regions.
Hence, problem will be created during voting because if two are wrong, it will
give wrong result. Hence, we need to reduce such dependence among the classi-
fiers. This will help to solve ensembling problem. The more the orange portion
areas, worse is the ensembling procedure. Thus, area covered by the orange por-
tion should not be more than any of the classifiers

2



Figure 3: Overlapped space

3 Informal Description
Suppose we have labelled N data points in the supervised learning. Create a first
sample dataset, D1, subset of the N datapoints. From this we get the first clas-
sifier, h1. It is a weak classifier; hence some data are wrongly classified. We
make some data and some exaggeration of it, that is we will try to increase the
probability of wrong points and decrease the probability of right points. Thus,
with the new probability we created another dataset, D2. Third case is we start
another exaggeration: h1 and h2 will differ. Since, they differ h3 choice will
utmost matter and then we sample and again create a new dataset, D3. Then a
voting is done on the final hypothesis, that is we take sign of the summation of
h1, h2, and h3 and so on of the binary classifier. First, we assign weight α to the
classifiers, called the weighted wisdom of expert crowds and then do the summa-
tion of the classifiers. Thus, the final hypothesis is the average of the majority of
the weighted wisdom of expert crowds. Exaggeration basically means changing
the weight of every point.

3



Figure 4: Final hypothesis

4 ADA Boost
We take a decision tree model. We call our model decision tree stumps: clas-
sify with one attribute, that is one side is plus (+) and another side is minus (-).
Stumps can be places at different positions. Total there are 2n number of deci-
sion stumps. Each stump can create 2 classifiers.

4



Figure 5: Decsion Tree Stumps

Final goal is to get a Classifier C in which we can aggregate the wisdom of ex-
perts. We can build the classifiers in a recursive manner.
When we started of each point with a weight, that is, for all i from 1 to N. We
start with time step 1. So, the error at time step 1 is sum of all the weights at
time 1 which are wrong because binary classifier is +1 or -1. if we go generic
way, at any step the error we make is wrong, that is the hypothesis is not match-
ing with our label. Due to normalization, average of errors is taken. We assume
the sum of all weights at any particular time is 1.

Figure 6: Average Error

4.1 ADA Boost Algorithm
Step1: Initialize all weights to 1/N. Then we have iterative version of updating
w(t). We pick a hypothesis, ht which minimizes error εt. Then based on that we
pick weight αt and we update weight at t+1, that is wt+1 then we repeat the pro-
cess of selecting a hypothesis that minimizes error. This is a repetitive process.

5



Figure 7: ADA Boost Algorithm

4.2 Mathematical Basis
We formulate the error in the form of an exponential loss. Sum of the weights
should go to one. For the correct case, the sign is always plus (+). ht(x) and y(x)
both will be +1. For the wrong case, sign will be always negative (-). We want to
exaggerate those points which are wrongly classified. If we have a wrong classi-
fication, it will be e to the power positive α. For the correct classification it will
be e to power negative. This is update or weight exaggeration.

6



Figure 8: Exponential Loss

We need to find the error at time, t. Each of the points that are responsible for
making wrong classification times whatever error we get. To get the minimum
error, we differentiate the equation with respect to αt and set it to zero. It is sum
over wrong points and correct points.
Finally, we get αt as half of natural logarithm of summation of correct points
divided by summation of wrong points. Recall that summation of wrong points
is εt and thus summation of correct points is 1-εt. Thus, now we are ensembling
ht(x) with αt.

Figure 9: Weight at time step t

7



We have two things to consider:
1) Updating of weight from wt to wt+1 which is basically with respect to expo-
nential loss
2) What αt+1 to pick up
We combine the following two equations to get:

Figure 10: Combined result

4.3 Adaboost weight updation
So ith weight updation at step t+1 is:

wt+1
i ← (wt

i/Z).exp(α
−t.ht(x).y(x)) (1)

and α at time step t we calculated is:

αt ← 1/2 ln(1− εt/εt) (2)

For all the points that are correctly classified,
If y(x) = 1 then h(x) = 1 or if y(x) = −1 then h(x) = −1, so

ht(x).y(x) = 1 (3)

For all the points that are incorrectly classified,
If y(x) = 1 then h(x) = −1 or if y(x) = −1 then h(x) = 1, so

ht(x).y(x) = −1 (4)

8



For correctly classified points, by combining the equation 1, 2, 4 and 3, we get -

wt+1
i ← (wt

i/Z)

{√
εt/1− εt for correctly classified points√
1− εt/εt for incorrectly classified points

(5)

Since the condition for weights at time t is,

N∑
i=1

wt
i = 1 (6)

It will satisfy at time t+1 also, so combining weights for all correctly and incor-
rectly classified points at time t+1 from equation 5 and 6 we have-∑

correct points

(wt
i/Z)

√
εt/1− εt +

∑
incorrect points

(wt
i/Z)

√
1− εt/εt = 1 (7)

Since
√
εt/1− εt is not dependent on wt

i so equation 7 reduces to-√
εt/1− εt

∑
correct points

wt
i +

√
1− εt/εt

∑
incorrect points

wt
i = Z (8)

Figure 11: Handout for weight updation and Z value calculation

9



Since we know that : ∑
incorrect points

wt
i = εt (9)

This gives - ∑
correct points

wt
i = 1− εt (10)

Combining equation 8, 9 and 10:

Z = 2
√
εt(1− εt) (11)

In equation 5 put value of Z from equation 11 and on solving we get-

1. For correctly classified points, on putting value of Z the 5 and taking sum
over all correct points, we get∑

correct points

wt+1
i =

∑
correct points

wt
i/(2

√
εt(1− εt))

√
εt/1− εt (12)

On solving, ∑
correct points

wt+1
i = 1/(2(1− εt))

∑
correct points

(wt
i) (13)

Using the equation 10,∑
correct points

wt+1
i = 1/(2(1− εt)) ∗ (1− εt) (14)

Thus for correct points we get∑
correct points

wt+1
i = 1/2 (15)

2. Similarly, For incorrectly classified points, on putting value of Z the 5 and
taking sum over all correct points, we get∑

incorrect points

wt+1
i = 1/2 (16)

Observation: In whatever ways the weights are modified, exaggeration is such
that weighted sum of incorrect points is also 1/2.

10



5 Decision Stumps
Decision stumps uses single level decision tree, so it predicts on the basis of
single feature at a time. If there are N points in d dimensional space, then total
number of hypothesis require to capture them using decision stumps will be dN .
So weights are updated dN times in Adaboost. Let the case of N points in 2-D
space has the following distribution as in fig 13. The Decision stumps require
2N hypothesis. But here the classifier h1 correctly classifies point p1 or mis-
classify it. Similarly, for the classifier h2, h3, h4 going on right side of them we
get one more misclassified point. So these all are not good classifiers, they form
a combination of bad redundant classifier. These redundant classifier over-
laps the region of bad space thus they are not independent. We do not choose all
weak classifiers rather choose any one among these bad redundant classifiers.
Thus the choice of classifier sharply reduces from 2N .
We observe that number of independent hypothesis that is decision stumps prac-
tically possible << dN so weight updation is done << dN times because of
redundant hypothesis.

Figure 12: Handout for decision stumps

11



6 Adaboost advantages
The choice for exponential function makes Adaboost very practical algorithm
because

1. It converges faster as it converges exponentially.

2. Practically it does not overfit.

3. It is computationally fast.

AdaBoost can be used to solve a variety of real-world problems, such as net-
flix price computation and it use adaboost to ensemble movie ratings, predicting
customer churn and classifying the types of topics customers are talking/calling
about.

7 Summary of Adaboost
1. Initialise the weights of N poitns (x1, y1), (x2, y2), . . . (xN , yN) by 1/N .

2. Create sample dataset D1 and get the hypothesis h1.

Figure 13: Decision Stumps hypothesis

12



3. Adaptively boost the weights of the data points. For the points that are
correctly classified by the hypothesis h1, reduce their weights by wt+1

i =
(wt

i/Z)exp(−αt) and increase the weights of correctly classified points by
wt+1

i = (wt
i/Z)exp(α

t) where αt = 1/2 ln (1− εt/εt).

4. Pick the next dataset D2 and get hypothesis h2 and repeat the steps 2 and 3
till we reach the final hypothesis hT (x) where T is the number of decision
tree stumps or any weak learning algorithm.

5. Ensemble it using H(x) = sign(
∑T

i=1 α
ihi(x))

8 Introduction to Dimensionality Reduction
Dimensionality is a curse. Increase in single attribue (dimension) results in ex-
ponential rise in the computation, so there is need to reduce dimensionality. As
shown in figure 14, the points are linearly separable in the 2-D plane. If they are
projected in x2 dimension then they are not separable but if they are projected
on the x1 dimension, they results into two separate clusters so they are also sep-
arable in x1 dimension. Thus, at a time not all the attributes contribute in the
separation method, so we can reduce dimensionality.
Kernel method enhances the dimensionality then separate the points in high di-
mension and then convert back to the original dimensions. Dimensionality re-
duction is the reverse process.
Goal of next class

Figure 14: Diensionality reduction

13



1. How to choose the attributes to get reduced dimensions such that we can
separate the dataset.

2. Kernel methods that enhances the dimensionality.

3. PCA (Principal Component Analysis) method that reduces the dimension-
ality to make machine learning algorithm easily implementable.

Contribution
Sreyasree Mandal: First 35 minutes of the lecture
Somi Vishnoi: Last 35 minutes of the lecture

14


	Previous class overview
	Goal of Ensemble Learning
	Examples

	Informal Description
	ADA Boost
	ADA Boost Algorithm
	Mathematical Basis
	Adaboost weight updation

	Decision Stumps
	Adaboost advantages
	Summary of Adaboost
	Introduction to Dimensionality Reduction

