
Machine Learning (CS60050)
Spring 2020-2021

Instructor: Dr. Aritra Hazra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture Date: Friday, 12tℎ March 2021
Scribed by: Vishal Gourav(20CS60R21)

March 13, 2021

Introduction
In general most of the problems we solve using machine learning comprises of data sets which
has the classes along with the data i.e., the model we create is trained under the supervised
learning paradigm. We have already seen that given a data set how we can create a good
learner that has a high accuracy and a low in sample error.

But every learner we create may not be good. For example, a learner which is a 2-class classi�er
has an in sample error of 0.4 is a weak learner.

Now we will try to learn how given a set of learners which are each individually not good(high
error close to 50%), we can combine them to make a good learner which is termed as Ensemble
Learning.

Multiple Learners in Ensemble Learning
Now the next thing one would imagine is how for a given data set di�erent learners can be
created. It can be done by changing di�erent aspects of the learning process which are as
follows:-

• Di�erent Algorithms. Di�erent algorithms like Support Vector Machine(SVM), Deci-
sion Tree Learner(DTL), Arti�cial Neural Network(ANN), etc.might be used on the same
data set to create di�erent learners.

• Di�erent Hyper-parameters. On a given data set, given the same algorithm we play
around with the hyper-parameter values to obtain di�erent learners. For Example, In
ANN, by varying number of hidden layers, varying the Learning rate, varying the number
of neurons in the hidden layer,etc.

1

• Di�erent Training Set. Break the given data set D into smaller chunks such that
D1 ⋃D2 ⋃D3 ⋃Dn = D and create separate learners using the same algorithm on
these smaller chunks.

• Di�erent Representation. One can also use di�erent mathematical representations of
�nal output inside the learner to create di�erent learners. For example, In ANN we can
use sigmoid, ReLu, Step functions or various other functions in the learning phase.

Eventually by the above ways we achieve more then one learner. Now ideally we want the
hypothesis for each learner and their respective errors to be independent of one another. For
example, in the Figure 1 for a given data set enclosed by the orange colored boundary each
hypothesis gives error for the part of the data set inside the smaller green boundaries i.e., ℎ1
has error e1, ℎ2 has error e2, ℎ3 has error e3, ℎ4 has error e4 and ℎ5 has error e5.

Figure 1: Ideal Ensemble Learner

What is to note here is that the data points where ℎ1 has error e1 all others are accurate
therefore we can take majority of all outputs by all learners. This can be done for all the other
4 hypothesis therefore resulting in the Ensemble Learner(H) having 100% accuracy.

But this is generally not the case. The multiple learners that are produced have some over-
lapping error error. For example, 3 learners on a given data set as given in Figure 2 have
hypothesis ℎ1, ℎ2 and ℎ3 which have errors e1, e2 and e3 respectively.

Figure 2: General Ensemble Learner

2

We can see there are overlapping regions in which majority voting will result in an inaccurate
result. This brings down the accuracy. Our goal is to reduce this overlapping part as much
as we can thus improving the performance of the ensemble learner. Thus our main goal
when creating an ensemble learner is to get the constituent learners with error boundaries as
independent from each other as possible.

Bias and Variance in Ensemble Learning
Before getting into the e�ect of of ensemble learning on bias and variance lets take a detour to
what for a given learner bias and variance is. This can explained with the Figure 3 below.

Figure 3: Bias and variance

As we see, the hypothesis(H) is yellow boundary, f (x) is the target function, the orange point
is the average hypothesis(g′(x)), the di�erence between (g′(x)) and f (x) is the bias, the green
point g(x) is what the learner has achieved and �nally the di�erence between g(x) and (g′(x))
is the variance.

In general more the bias, less is the variance. But we want to get to a state where the bias and
variance both are as low as possible which we will try to achieve in ensemble learning.

An example, given a 2 class problem(Classes A and B), n independent learners each having
accuracy=0.7 where n1 learners classi�es a test point to class A and n2 learners classi�es it to
class B where n1 > n2 and n1 + n2 = n. Using binomial theorem,

Bin(n, r , p) = (
n
k)p

r (1 − p)n−r

we get the probability of test data belonging to class A as,

Probability[Class(n1) = A] = 1 − Bin(n1, n2, 0.7)

Sometimes instead of using majority as in the above example we also may use weighted
majority where each learner is given a prede�ned weight wi ≥ 0 such that ∑i=n

i=1 wi = 1. The
weights wi for example, may be proportional to accuracy or inversely proportional to variance
for each learner. Finally the output is obtained of the ensemble learner is obtained as,

y =
i=k
∑
i=1

widi where wi ≥ 0

3

If all the weights wi are the same then it e�ects the variance int he following ways:-

Var(y) = Var(∑
j

1
k ⋅ dj) =

1
k2 ⋅ k ⋅ var(dj) =

var(dj)
k

As we can see here the variance of our ensemble learner decreases by a factor k which
is the number of learners we have. Thus, the bias also deceases.

Ensembling
Given the Learning model being used it may not be a straight forward task to ensemble the
weak learners to make an ensemble learner. For example, in a Bayesian Learner with ensemble
technique we produce classi�ers M1, M2,Mk then probability P (Ci |x) of a particular data
point x belonging to a class Ci is,

Prob(Ci |x) =
t=k
∑
t=1

Prob(Ci |xi , Mt) ⋅ Prob(Mt) ⋅ wi

But getting the value of Prob(Mt) as a priori which is the probability of how good the model
Mt for the given data set. Further �nding Prob(Ci |xiMt) is computationally very heavy. To get
the values faster something called the Bayesian Model Average(BMA) is used which uses
Monte Carlo Approximation(out of scope).
Once the ensembling is done the �nal value can be found in the following way:-

y = argmax
Cj∈C

(∑
ℎi∈H

Prob(Cj |ℎi) ⋅ Prob(TE|ℎi) ⋅ P (ℎi))

The value of y obtained above classi�es given the test example, TE to a particular class.

4

MACHINE LEARNING (CS60050) Spring 2020-21

Instructor : Prof. Aritra Hazra

Scribe by : Suyash Tiwari (20CS60R18)

Date : 2021-03-12

Independent Learner :

Till now, the main bottleneck is the non-indepencence of outputs. For independent

outputs we can write from earlier as :

If they’re not independent and are correlated, then we can write the formula for

covariance as :

d

 ,

This formula is not as bad as it looks. The learners di and dj will be independent for

some i and j since, not all learners are dependent with each other. This will give a

considerable amount of reduction since Cov(di,dj) = 0 for those independent learners

(or very less due to less dependency).

Fig : Independent Learners

How to make/produce Independent Learners?

One way is to produce datasets {D1,D2,D3 ... Dm} from our existing dataset D. We can then

use these different datasets to generate different learners {h1,h2,h3 ... hm} and then just

combine them all and then finally produce a final h.

One approach to generate different datasets is called Bagging. Suppose there are m

baskets, now we will take different samples randomly from D and place them in baskets

with replacement. This will generate m datasets such that some of the samples may be

repeated. The probability of picking up a sample in any of the basket with replacement

is (1-(1/n)m). By this method, almost 63% of data will be not repeating and 37% data

will be repeating. This particular method of sampling with replacement is called

Bootstrapping.

Fig : Bagging

Fig : Bagging Example

Random Forest Classifier

The method of bootstrapping is very successfully used in Random Forest which is

Ensembling of Decision Trees. It creates randomised datasets using bootstrapping then

unpruned decision tree is grown for these datasets as {h1,h2,h3 ... hm}. However, one

more kind of randomness is introduced in the datasets created. Suppose the attributes

are {a1,a2, ... ,al}, then when decision tree is created each node is split based on the

random subset of these l attributes instead of all attributes. Refer again to the figure as

before given below :

Boosting :

This is much more efficient than Bagging. Suppose we have a dataset of N points :

 Initially, each of the data points is given same probability (weights) of 1/N to be

selected.

 Now, one dataset D1 is created and a hypotheses h1 is created using a learning

algorithm.

 For all the data points misclassified by h1 the weights are increased and for

correctly classified points it’s decreased such that ∑wi = 1 where wi is the weight

of data point i.

 Again a new dataset D2 is created but it will contain more misclassified points

since probability (weights) of those points is increased.

Fig : Random Forest Classifier

 With D2 again a learning algorithm is run to create hypotheses h2. Again the

weights of misclassified points is increased and correctly classified points is

decreased.

 Now, D3 is generated and this process goes on.

This produces very nice hypotheses and final classifier combines the votes of each

individual classifier. The votes are combined by assigning weights to classifiers based

on their accuracy.

In the next class, we will discuss AdaBoost which is the most popular ensembling

technique.

Summary :

 We have weak algorithm and we need to produce strong learner.

 Different weak learners are produced from this weak algorithm and an ensemble

is taken to produce a strong learner.

 In this process, variance decreases but bias remains almost same but the main

challenge is independence of learners.

 For this, we tried to do Bagging which is either Bootstrap or Stratified Sample

and learned philosophy behind Boosting whose main method is AdaBoost.

Fig : Boosting

