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Validation versus regularisation

Our goal while training our machine learning model is to track our out of sample
error and bring it as close as we can to our in sample error. It still can’t be
tracked exactly so we allow some amount of penalty and say that the absolute
difference between the in sample and out of sample error is upper bounded by
this penalty. This penalty can be present due to variety of different reasons like
overfitting, wrong model selection, noise in the training data etc.

Eout(h)︸ ︷︷ ︸
validation

= Ein(h) + Penalty︸ ︷︷ ︸
regularization

Here, as indicated in the expression, regularisation helps us estimate the value
of the penalty, whereas on the other hand validation helps us estimate the value
of out of sample error of our model.

How does validation work?

In validation we use certain data points not used while training our model
initially, and then calculate error for these data points between the predicted
and actual value. Then we use these error calculations to estimate the out of
sample error of our model.
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As we can see in the figure above how using the error e(h(x),y) for a point
we didn’t use in the training can help us track the out of sample error of our
model. Similarly it can be extended to multiple data points and we can estimate
out out of sample error using them.
One important metric to look here is the variance of the errors we are calculating
for these points, as this tells us how accurately we are estimating the out of
sample error, which is our ultimate goal. As we can see the k (no. of validation
data points) is in the denominator of the equation for calculating variance, which
brings us to the conclusion that the more number of validation data points we
have the better we’ll be able to estimate our out of sample error.

The validation-accuracy trade off

Suppose we have N training data points and we use k of these points for our
validation purposes. This leaves us with N-k data points to train our model.
Now when we have a close look at the graph between our errors and the number
of data points we use for training, we get some interesting observations. Here

we observe that as we increase the k (and hence decrease N-k), the less accurate
our model becomes worse. We estimate our out of sample error very well but
we have a much less accurate model. Similarly for a small k, we train a better
model but our estimation of out of sample error is bad.
The possible solution to this problem is that we use N-k data points for training,
k data points for validation, and finally supply a model which was trained using
all the N data points while using the out of sample error estimation of our
previous model as the proxy for this model. As we can intuitively understand
how with increasing k this proxy will become less and less accurate but practical
experience has found out the values of k around N

6 to N
5 gives us good results.
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Understanding Validation

To get a deeper understanding of how validation works, let’s assume we have
M models, namely H1, H2, ...., HM . On training these models on the training
dataset Dtrain which contains N − k points, we get M hypothesis, which can
be called as g−1 , g

−
2 , ...., g

−
M . Now, we calculate the error of each of these

hypothesis with the validation dataset Dval which contains k points. These
gives us validation set errors of each hypothesis E1, E2, ....., EM . Out of these
we pick up the model with the least validation set error (E∗

m) and train the
model with the complete dataset (D) containing all N points to give the best
hypothesis (g∗m).

This plot arises two questions in our minds:

1. Why does the Eout(g
−
m) curve grow like this?
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2. Why do the two curves meet?

Explanation: The X-axis of the graph denotes k which is number of points in
validation set, which is inversely proportional to number of points in training
set. Figure on page 2 shows the Eout with respect to number of points in training
set, which is the mirror image of the plot we have in this graph. Hence, the
curve grows in this manner. As for the second question, as the k increases, there
is a better chance that my validation set estimates Eout correctly.
By Hoeffding inequality, we can say:

Eout(g
−
m∗) ≤ Eval(g

−
m∗) +O(

√
ln(M)

k
)︸ ︷︷ ︸

where this is:√
1

2k
ln(

2M

δ
) , with (1− δ) probability or confidence

From this inequality, we can see that k is inversely proportional to difference of
Validation error and Eout.
The Dilemma: Our target is,

Eout(g) ≈ Eout(g
−) ≈ Eval(g

−)

Now, to satisfy the second inequality, the error is inversely proportional to
k, hence a larger k is good for the second approximation. Whereas, the first
approximation requires a smaller value of k as Eout(g) is with respect to final
hypothesis and Eout(g

−) is with respect to the training data. There is no
solution for this dilemma
Rule of Thumb: Take k as N
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Cross Validation

General Cross Validation

Let we have Dn = (x1, y1), ....., (xN , yN ),
Out of this we keep 1 point for validation and the rest N −1 points for training.
Hence the Validation error for hypothesis g−n will be:

en = Eval(g
−
n ) = e(g−n (xn), yn)

Cross Validation Error: This is defined as the mean of validation errors with
respect to all the points in the dataset i.e. mean of all en. Hence, mathematically

ECV =
1

N

N∑
n=1

en
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That means that we perform this experiment, N times for all points taking a
different point as validation set each time and calculating the validation error
with respect to each point. The mean of all these validation errors becomes the
cross validation error.
Explaining with an example:

Figure 1: Linear Hypothesis Fitting

Figure 2: Constant Hypothesis Fitting

Let we want to fit a linear hypothesis for these three points. The cross validation
experiment suggests that we leave one point out, train a model for the other two
and find the corresponding validation error in the manner shown in the above
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plots. Final Cross Validation Error will be:

ECV =
e1 + e2 + e3
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Now we fit a constant hypothesis for these three points. The cross validation
experiment suggests that we leave one point out, train a model for the other two
and find the corresponding validation error in the manner shown in the above
plots.
Depending on the Cross Validation error of both the hypothesis we may decide
which hypothesis fits the dataset better.

K-Fold Cross Validation

We know that datasets can be huge and in such cases in cross validation where
we have to train and compute error N number of times, Cross Validation gets
computationally expensive. Hence, we use another method called the K-Fold
Cross Validation method to calculate Cross Validation Error.

Method: We segregate the data into folds of equal number of points i.e. k
number of points. Let the folds be D1, D2, .., Dk, ..., Dn.
Now, we take out a fold (let say Dk) and train the model on the rest of the folds
i.e. we train the model on {Di}−Dk folds. We validate the hypothesis on only
Dk and we repeat this procedure for all folds one by one. Thus, we train the
model n(= N

k ) times on N − k points each time. Finally we take mean of all
validation errors obtained from validation with respect to each fold.

Stratified K-fold Cross Validation

In K-Fold Cross Validation, we don’t take care about the distribution in each
fold which can lead to adverse results in some cases. Hence, we use Stratified
K-Fold Cross Validation. In this variant, we create different strata of points
i.e. we create strata of same output points and then use the strata to create the
folds with uniform distribution of points. The rest of the procedure is same as
K-Fold Cross Validation to obtain the final Cross Validation error of the dataset
with respect to a hypothesis.
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