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1 Recapitulation

Overfitting:

• Stochastic Noise: Data with Noise fitting

• Deterministic Noise: Higher Order Data fitting

Figure 1: Variation of error with number of training examples

• Increase in Training data results in reduction in Overfitting.

• Increase in Noise levels results in increase in Overfitting.

• Increase in Target complexity results in increased in Overfitting.
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• Relation with VC-dimension: Allows the generalization bound but it’s so pessimistic that effective
Eout (test error) will be much lesser than the given tolerance.

• Remedies:

1. Regularization
2. Validation

2 Regularization

Figure 2: With and without regularization

Instead of abruptly allowing every possible fits we restrict them. Hence reducing variance and constraining
our solution space.

Legendre Polynomials: Orthogonal in nature and less correlation between the terms.
Examples: x, (3x2-1)/2 , etc.

We’ll consider our Hypothesis space to be as a linear combination of legendre polynomials.

HQ =

Q∑
q=0

WqLq(x)

Z = [ 1, L1(x), L2(x), ..., Ln(x) ]

We’ll transform the training set with respect to these polynomials so as to transform the training points
into Z-space. ((z1, y1),(z2, y2), ...,(zn, yn)) . Depending upon the constraints, we can now make some W’s as
zeros and others as ones. The ones with the zeros are no longer considered in our hypothesis space, thus we
can control complexity. Now Linear Regression will minimize the apparent error.

Ein(W ) =

N∑
n=1

(WTZn − yn)/N

= (1/N)(Z ·W − Y )T (Z ·W − Y )

Wlin = (ZTZ)−1ZTY

[Unconstrained Fitting of N points]
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If we convert H10 to H2, we are making Wq = 0, for all q greater than 2. This is a Hard Constraint.

Rather we can impose a soft constraint by

Q∑
q=0

W 2
q <= C

Now we have to minimize

Ein(W ) =

N∑
n=1

(WTZn − yn)/N

subject to
WTW <= C

This will give us a regularized solution
Wreg

Figure 3: Constrains between Wreg and Win

∇Ein(Wreg)α−Wreg (1)

∇Ein(Wreg) = −(2λ/N)Wreg (2)

∇Ein(Wreg) + (2λ/N)Wreg = 0 (3)

which is the equation we get by the minimization of

Ein(W ) + (λ/N)WTW (4)

This bring to the conclusion that the subjected minimization and the latest equation are duals of each other.
C and λ are inversely proportional.
We have converted unconditional to conditional, We can apply VC dimension in unconditional, but uncon-
ditional will land up value of W in infinite space so it is easier to analyse VC Dimension in conditional and
easier to solve in conditional hence they are both used conversely.
From this we can conclude that

If C ↓⇒ λ ↑⇒We get Ein as solution

If C ↑⇒ λ ↓⇒WWT dominates

Hence no option, provision for reducing the error
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3 Augmented Error

We are trying to minimize

Eaug(W ) = Ein(W ) + (
λ

N
)WTW =

1

N
[(ZW − Y )T (ZW − Y ) + λWTW ] (5)

In equation (5) both the part are quadratic hence we can solve it using quadratic programming

∇Ein(W ) = 0⇒ ZT (ZW − Y + λW = 0)

Wreq = (ZTZ + λI)−1ZTY (6)

OpposedtoWin = (ZT )−1ZTY

This implies
If λ is large ⇒ Constraining Solution that is Making Wreg = 0

More λ makes the circle smaller and decreases chances of getting to Win

Makes the curve flatter(smother)
If λ is small ⇒ Encapsulating WininsideofitthatismakingWreg = Win

Figure 4: effects of λ values.

over − Fitting −− > Reg1−− > Reg1
′
...−−− > ...under − Fitting

Choice of λ is very Important
We have to choose λ, validate it and choose out which is the best

4 Weight Decay

Instead of one step solution, We can use gradient decent(Batch or stochastic)
We try to update the parameter

W (t+ 1) = W (t)− η∇[Ein(W (t)) +
2λ

N
W (t)]

W (t+ 1) = W (t)[1− 2ηλ

N
]− η∇Ein(W (t)) (7)

This decay means that instead of moving towards solution directly. It shrings a little bit and move in that
direction so that going towards the target change in such a way that we do not hover randomly and overfit.
In Neural networks we can use

WTW =
∑∑∑

(W l
ij)

2 (8)
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5 Weighted Regression

Instead of only constraining weights to C, we constrain them to∑
γqW

2
q ≤ C (9)

If γq = 2q ⇒ Fit low order Polynomial, Smooth Curve
If γq = 2−q ⇒ Fit high order Polynomial

6 Why do we use ≤ C rather than ≥ C?

The main reason is
Stochastic Noise ⇒ High Frequency
Deterministic Noise ⇒ Non Smooth
High order Legendre polynomial are usually non smooth and low level are smooth, In practical we go for
low frequency, low order functions as low frequency cancels both high frequency Stochastic noise as well as
Deterministic noise. This is called OCCAM result

Figure 5: Shows training error vs λ value and Weight Growth vs Lambda

After Regularisation,

Eaug(h) = Ein(h) +
λ

N
Ω(h) (10)

In our VC bound we have found

Eout ≥ Ein(h) + Ω(H) (11)

Here ’H’ denotes entire space while ’h’ means training distribution

Here we can say that from above equations Eaug(h) is closer to Eout than Ein. Therefore, we can say that
Eaug is better than Ein.

Figure 6: Shows the range in which W resides
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Sometimes in VC analysis we compute

Ω(h) =
∑ (W l

ij)
2

β2 + (W l
ij)

2
(12)

Here β is Smoothing Parameter and this is known as self weight elimination

7 Optimal λ

Figure 7: Optimum value of λ for different frequency of noise

These show those two noises are not very different
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