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1.Recap 

The last class where we started to understand about the bias and variance in the machine machine 

learning. 

1.1  How well g Є H approximate f? 

 
 

So this is a question of how good we approximate versus how good we generalize. So how 

could we approximate means that you have a hypothesis that and we are finding the 

particular final hypothesis from that hypothesis with respect to the data points or the training 

examples that are handed over team in machine learning, that is primarily our job. Now, the 
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hypothesis that we find out from the hypothesis said how well or how close it is to the 

unknown, that is a function. 

Is the first question that is the approximation question that we try to us and that we also call in in 

colloquial machine learning as the basis of that hypothesis, that the hypothesis is how much biased 

towards finding a solution which can approximate. On the other hand, we also have seen that if the 

hypothesis set out the model being too complex, then it is difficult to find the actual or the best 

hypothesis, even if it is within the realms of diversity. Because the question is that you will only be 

going to find that particular best hypothesis through your data point, nothing else. So there the 

challenge lies and we see that many times, even if our hypothesis state is very expressive, but we 

somehow underplay and find out the hypothesis, which is not the best. So therefore, the best 

hypothesis. 

 

1.2  How to find best g Є H 

So this is the approximation, which is generally the same question. And this generally is in fact, that 

we also capture in terms of what we call variance and we try to find out a formal expression for that. 

 

When we try to find out the average hypothesis from the hypothesis that it is nothing but a 

particular hypothesis is basically comes out from the given training example or the data point 

that that has applied. So whatever hypotheses we could find out from any of this study, if I take 

an expected value of that, that is the expected best hypothesis or we call it as an average 

hypothesis. 

And if you remember, 

Ex [ f(x) ] = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

 it was really we call something expectations of X, but function effects is if the X range is within 

the domain of from the from A to B, then usually we calculate effects using this Formula X into a 

fixed degraded from A to B, from A to B, the range is continuous. And if the range is this quickly, 

this submission and put an average of that, that's all in from the provability side, you need you 

need to know what you need to refresh it. 

                           ED [ Eout (g)] = ED [ gD (x) – f(x)2] 

                                                      =  

Now, what we want we want to eat out, that is the out of simple estimation of error with respect to 

the hypothesis that people no remember could be anything depending on the data point that is given 

to you. It is not a particular data point, but depending on all the data points, you could be different. 

So we need an expected out of sample performance or that we have seen that what is a particular 
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sample performance minus its difference, we assume is some squared error for convenience. And then 

what we did is that we took an expected value and we have these computations where we put a minus 

Deibert X plus Durex in between and had a square custom cancels. 

And finally we reach in a scenario where this is the term which says that how good you are generalizing 

with respect to the hypothesis that you find. So how far it is from the best hypothesis in that particular 

set that could be found? And this is saying that how good is your hypothesis set in making the best 

hypothesis from it within the approximate properly the function, the target function that is unknown 

to us. 

 

So which means that the first term is actually the variance if we take it over every possible X and the 

expected value, the first time is the variance and the second is the bias, because it says that the whole 

hypothesis is being biased so that the best one is also far away from iPIX, how far it is. And this says 

that how can you generalize by choosing a hypothesis with respect to your best hypothesis? So 

assuming that best hypothesis generalizes best, so how better to generalize? 

 

And also, you have seen pictorially what happens if your hypothesis has become too complex. That is, 

you allow many possible hypothesis. Then  what will happen is that finding out gibberish is difficult. 

So you have a high variance. However, your body may be this hypothesis that contains the target 

function itself and is sufficiently close to to say it's a low bias but high variance. Whereas in this case 

where your hypothesis model is very restricted there, you may easily find out the best one by 

navigating through the hypothesis space, then for your variance is very low. However, it may be the 

case that this hypothesis is far away from from the actual target function. So your bias might have 

some practical experience. 
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So let's say that I have a very simple target function and since I do not know the target function, just I 

will give you some data points for it. So let's say I have. This is I give you the data point and so let's 

suppose my target  function is this one, which I do not know. 

Anything below, which I do not know and I give you certain data points. Your five data points which 

are a little bit noisy. So a little noise, I mean, not drastically, it will impact the performance of your 

final hypothesis, but I am seeing a little noise they have. So therefore the target function does not 

have this particular data point over it because it had some noise target function plus some nice. And 

now I need to put it this five datapoints with. 

Some kind of a cut, as you can see, that my overall goal would be to minimize that in almost toward 

zero, so I have five points to fit. And therefore, my immediate conclusion is from this, that let me take 

in my hypothesis, said Francisco. Fourth order polynomial. Because for total polynomial is most likely 

to fit all these five points very perfectly. 

Let's say you put it this way, so fourth order polynomial may look like this and you put your points in 

a bowl made plain so that it becomes over the line. If at this point in this. Now, as you can easily 

understand here, your team is basically these things contribute to each of you, that how bad you are 

doing with respect to the target function is contributed by. So therefore, you can easily find out that 

while taking this one, I'm fine, but it is indeed very bad. 

 Now, if you if you try to look, if you take a look very carefully at what has happened and that that that 

has given the thing a little bit bad shape, because I have tried to fit as much as possible with equal to 

zero. The point is, see, there is some noise in the point. And when you try to fit your final hypothesis 

there, according to that noise, you are also trying to fit in the noise instead of only the point. That's 

point number one. 
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2. Overfitting and Bad Generalization 

This is basically it results basically, I can see that this is a kind of overfitting. It resolves to bad 

generalization because my ego is very big, but I could see a general generalization. It's a bad 

generalization.  

So if you look at the Omega, that is the difference between in an Eout boundary that generalization is 

going back. So at that point, I understand that there is no more that I could do with respect to this 

kind of activity. So which means that even if I try to fit very large with the large number of data points 

and gradually at each epoch, I keep on training, training, training and pushing down the end, using 

gradient descent or whatever else, I will certainly see there is a point where Eout is not behaving as 

intended and it is going up. So that is the point where you that means this many examples after that 

you are trying to overpacked that. This is an indication so far we can say that when Eout will go up, 

irrespective of Ein is coming down, then at this scenario I see very little effect. And as you can see from 

this figure, if we have such kind of a graph and a validation data with this from this picture, what we 

derive is that why should we go beyond this to we will try to fit it within this position and we will stop. 

This is called early stopping. Stopping. This is a thing that we often do to eliminate the type of 

overfitting that we will deal with these details when we do for the validation and regularization. 

 

2.1 Hypothesis 

The hypothesis that you're trying to project is to is trying to do two things. One, it is trying to fit the 

effects target, which is unknown. And it also tries to fit the deviation in terms of every point, the 

deviation sigma X noise, and that gets things becomes very bad with respect to the higher order 

polynomial. So this is a scenario where you have noisy data. 

2.2 Overfitting 

Overfitting is a respected term that overfitting with respect to work, so therefore I can say that I have 

two hypothesis g1(x) and g2(x). g1 overfit, then g2 overfit when I will find that whenever I go from g1 to 

g2 , Ein is reducing and Eout is increasing. 

g2 because when I move from g1 and g2 and make it complicated, maybe a hypothesis, I see that I have 

a drastically improved performance in Ein, but similarly, I have a very bad performance with respect 

to your as we see in this carvelle. So then we define that overfitting means this g2 to the hypothesis 

that we derive is overfitting. 

With respect to g1, maybe you want to work with respect to some other, but since it's overfitting, so 

it should be some kind of comparative competitive behaviour between two hypotheses. 
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So here are two examples. The top figure, this one is basically the correct target function is in blue. 

The correct target function, let's correct that at the 10th-order target, whatever we may correct, 

target functioning the 10th-order target, a target that I don't know I don't know about the target 

function, it's a 10th-order target with some noise like this. 

The other example that we will take is the 50th-order target function. Trying to fit in a second order 

polynomial hypothesis and another learner, which is in the red here, is trying to fit into the 10th-order 

polynomial. For example, let's say the learner in the red is thinking that maybe the target is the 10th-

order. Let me put it to the 10th-order polynomial.  

So the hypothesis of one learner consists of only second order polynomial, the hypothesis of other 

learners consist of all 10th-order polynomials. Both hypotheses are infinite because the coefficient is 

can be continuous and you can take any second order polynomial, many such equations. So therefore, 

if you try to fit like this now with respect to the blue curve you see here and with respect to the blue 

curve, you see the red curve as well as the green curve, we will find that the of 10th-order polynomial 

is a chance. There is a chance that it may overfit because it is trying too hard to fit the points. And 

indeed, noise is there and hence noise is also coming into picture. 

Polynomial target can also be pulled short because it's a f58th-order target that we need to reach. So 

any 10th-order polynomial can also in second order polynomial is let's say somebody tries with the lock 

that let us try to take another step. But however, here you see the the way it fits the 10th-order 

polynomial, looking at the 15 points. So all of these cases, I have even 15 points in both cases. So it 

tries to fit in too tightly. 
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3. The role of Noise 

3.1 Performance of Noisy 

Now I have the figure with me, you can just experiment with any of the linear regression techniques 

or Second-order and get these figures with you. Obviously consider polynomial. That's better, because 

if the target is 1oth-order, this will obviously better fit for the given data points that I have. But here 

you see, it's horrible. In the main reason being, if you look at the blue curve with respect to the blue 

curve and there are positions like this position, it shoots up, it shoots up so much that it indeed carries 

this kind of bad out of generalisation. 

3.2 Performance of Noiseless 

And on the other hand, if we try to see the performance of Noiseless said that is this one. 

The same thing we will try to see here that let's say this is second order and 10th-order. You will see 

the first one in the second order drastically, it also tries to reduce it very well and depending on the 

data point distribution, it does very well. 1oth-order is marvelous. It does 10-5. It's marvelous. 

However, if you go for Eout. It is this and do you know what the experiment figure out of the 10-th 

order 7680. 

The best 2nd and 10th order fits are shown in Figure, and the in-sample and out-of-sample errors 

are given in the following table- 

 

 

 

 

 

 

 

 

 

 

What the learning algorithm sees is the data, not the target function. In both cases, the 10th order 

polynomial heavily overfits the data, and results in a nonsensical final hypothesis which does not 

resemble the target function. The 2nd order fits do not capture the full nature of the target function 

either, but they do at least capture its general trend, resulting in significantly lower out-ofsample 

error. The 10th order fits have lower in-sample error and higher out-ofsample error, so this is indeed 

a case of overfitting that results in pathologically bad generalization. 
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3.3 Learning curve 

Figure : Overfitting is occurring for N in the shaded gray region because by choosing 1-l1 0 which has 

better Ein, you get worse Eout · 

 

 

 

 

 

 

 

 

The models H2 and H10 were in fact the ones used to generate the learning curves in earlier lecture , 

and we use those same learning curves to illustrate overfitting in above Figure. If you mentally 

superimpose the two plots, you can see that there is a range of N for which H10 has lower Ein but 

higher Eout than H2 does, a case in point of overfitting. 

4. Impact of “Noise” 

How the noise level , the target complexity Qf, and the number of data points N relate to overfitting. 

We compare the final hypothesis g10 belongs to H10 (larger model) to the final hypothesis g2 belongs 

to H2 (smaller model) . Clearly, Ein (g10) ≤ Ein (g2) since g10 has more degrees of freedom to fit the data. 

What is surprising is how often g10 overfits the data, resulting in Eout (g10) > Eout (g2). Let us define 

the overfit measure as Eout (g10)≤ Eout (g2). The more positive this measure is, the more severe 

overfitting would be. 
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Figure 1:  Deterministic noise. h* is the best fit to f in H2. The shading illustrates deterministic noise for this learning problem. 

Figure shows how the extent of overfitting depends on certain parameters of the learning problem  . 

In the figure, the colors map to the level of overfitting, with redder regions showing worse overfitting. 

These red regions are large overfitting is real, and here to stay. 

Figure part ( a) reveals that there is less overfitting when the noise level drops or when the number of 

data points N increases . Since the 'signal' f is normalized to E[𝑓2] = 1, the noise level is automatically 

calibrated to the signal level. Noise leads the learning astray, and the larger, more complex model is 

more susceptible to noise than the simpler one because it has more ways to go astray.  

Figure part (b) reveals that target function complexity Q f affects overfitting in a similar way to noise, 

albeit nonlinearly. To summarize, 

                                      

 

5. Deterministic Noise 

Why does a higher target complexity lead to more overfitting when comparing the same two models? 

The intuition is that for a given learning model, there is a best approximation to the target function. 

The part of the target function 'outside' this best fit acts like noise in the data. We can call this 

deterministic noise to differentiate it from the random stochastic noise. Just as stochastic noise cannot 

be modeled, the deterministic noise is that part of the target function which cannot be modeled. The 

learning algorithm should not attempt to fit the noise; however, it cannot distinguish noise from 

signal. On a finite data set, the algorithm inadvertently uses some of the degrees of freedom to fit the 

noise, which can result in overfitting and a spurious final hypothesis. 
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Graph in Figure illustrates deterministic noise for a quadratic model fitting a more complex target 

function. While stochastic and deterministic noise have similar effects on overfitting, there are two 

basic differences between the two types of noise. First, if we generated the same data (x values) again, 

the deterministic noise would not change but the stochastic noise would. Second, different models 

capture different 'parts' of the target function, hence the same data set will have different 

deterministic noise depending on which model we use. In reality, we work with one model at a time 

and have only one data set on hand. Hence, we have one realization of the noise to work with and the 

algorithm cannot differentiate between the two types of noise. 
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The bias-variance decomposition, which we discussed earlier is a useful tool for understanding how 

noise affects performance: 

                                         

 The first two terms reflect the direct impact of the stochastic and deterministic noise. The variance 

of the stochastic noise is sigma2 and the bias is directly related to the deterministic noise in that it 

captures the model's inability to approximate f. The var term is indirectly impacted by both types of 

noise, capturing a model's susceptibility to being led astray by the noise. 

6. Dealing with Noise 

To deal with noise we have two cures that are  

1.Regularisation: Putting the brakes. 

2.Validation: Checking the bottom line. 

  

 

 

 

 

 

 

Regularization is our first weapon to combat overfitting. It constrains the learning algorithm to 

improve out-of-sample error, especially when noise is present.  
Why regularization is needed. The linear model is too sophisticated for the amount of data we have, 

since a line can perfectly fit any 2 points. This need would persist even if we changed the target 

function, as long as we have either stochastic or deterministic noise. The need for regularization 

depends on the quantity and quality of the data. Given our meager data set, our choices were either 

to take a simpler model, such as the model with constant functions, or to constrain the linear model. 

It turns out that using the complex model but constraining the algorithm toward simpler hypotheses 

gives us more flexibility, and ends up giving the best Eout. In practice, this is the rule not the exception. 

   

 Note: Scribe is based on lecture taught by Prof. Aritra Hazra on 26 Feb’21 under course O Machine Learning (CS60050). All 

the figures are taken from slides and handout uploaded on course website. 


