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1 Goal of Learning

If learning is feasible, it is likely that

Eout(g) ≈ Ein(g)

If g ≈ f then, Eout(g) ≈ 0. This can be achieved if the following condtitions are satisfied:

1. The value of Eout(g) must be close to Ein(g). i.e., Eout(g) ≈ Ein(g)

2. The value of Ein(g) must be very small. i.e., Ein(g) ≈ 0

Note that, as the model complexity increases, Ein(g) reduces while Eout(g)−Ein(g) increases. Thus,
a trade-off must be decided for optimising the learning of the model.

2 Feasibility of Learning

The condition, Eout(g) ≈ Ein(g) is satisifed, if the probability distribution

P [|Ein(g)− Eout(g)| > ε] ≤ 2Me−2ε
2N

is satisfied. Here, M is the number of non overlapping classifiers and, is ∞. Hence, the feasibility of
learning is directly related to M.

Improving the value of M improves our learning. This can be achieved by considering a finite set of
input points instead of the whole input space and counting the number of dichitomies.

Figure 1: Image showing multiple hypotheses that classify the points correctly
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In practice, there are not an infinite non overlapping hypotheses for a given constellation of points.
This is shown in Figure 1, where both hypotheses h1 and h2 classify the points correctly. These hypotheses
only contribute once in M instead of twice. This results in the reduction of training space from ∞ and
offers an option to generalise the training.
In other words, we can reduce the hypothesis

from H{X} → {+1,−1} to H{X1,X2, ...,XN} → {+1,−1}

While the number of hypotheses H can be ∞, the number of dichotomies H{X1,X2, ...,XN} is at
most 2N . This result in a new function, |H(X1,X2, ...,XN)| ≤ 2N.

3 Growth Function

The growth function mH(N) is defined as the maximum number of dichotomies of a given training space
while the points are arranged in the worst possible arrangement.

i.e., mH(N) = max
X1,X2,...XN εX

|H(X1, X2, ..., XN )|

In Figure 2, the constellation in the left is the worst possible arrangement and the constellation in
the right is not the worst possible arrangement.

Figure 2: Different constellations possible for three points

This is because, if the points have alternating classes, it will be difficult to find a single line to split
the points. The number of dichotomies for each type of constellation are given in the following section.

3.1 Growth functions of different constellations

Some types of constellations and their growth functions are:

1. 2D Perceptrons

Figure 3: Arrangement of points for 2D Perceptrons

a) Consider the first image with a single point. This point can be classified as a +1 or a -1. So,
the number of dichotomies is 2.

2



b) In the second image with two points, the points may both belong to the +1 class or the -1
class, or they may belong to different classes (both points can be a +1 or a -1). The total
number of dichotomies is 4.

c) The third image shows the worst possible way to arrange three points and can be classified as,
all points belonging to +1 or -1 (contributes 2), one point belonging to one class and the rest
to another (contributes 6) resulting in the total dichotomy being 8

d) The fourth image shows an arrangement that cannot be split if the middle point belongs to a
different class.This results in lesser than maximum number of dichotomies so, this arrangement
is not considered.

e) The fifth image shows an arrangement of 4 points. All the points may belong to +1 or -1
class (contributes 2), one point belongs to +1 and the rest to -1 or vice versa (contributes 8)
and two adjacent points belonging to +1 and the other -1 or vice versa (contributes 4). If
the points are arranged in such a manner that opposite points belong to +1 or -1, the points
cannot be split using a single line. Hence, the maximum number of dichotomies is 14.

2. Positive Rays and Intervals

Figure 4: Possible dichotomies for positive rays and intervals

a) Positive rays are a dataset arranged on a line where, any point to the left of a classifier always
belongs to -1 and all points to the right always belong to +1. For positive rays, the classifier
can exist between all of the N points (contributes N-1) and additionally, all the points may
belong to +1 or -1 class (contributes 2). The total dichotomy is N+1.

b) A positive interval is a dataset similiar positive intervals where, any point within an interval
may belong to either +1 class or the -1 class (contributes

(
N+1
2

)
). Additionally, the points

may not belong to either class (contributes 1). Thus the total dichotmy is
(
N+1
2

)
+ 1.

3. Convex sets

Figure 5: Possible dichotomies for a convex set

a) If there exists a set with all points along the boundary of the set, such a set is called a convex
set if there exists a straight line from all points to each other without crossing the boundary
of the set. In Figure 5, the set on the top is not convex as the line has to cross the boundary.

b) The points are classified as all points which are connected by the lines belonging to one class
and the rest to another. Thus, the dichotomy of such a set is always 2N .
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3.2 Break Point

If no dataset of size k can be shattered by H then, k is a break point for H. Any dataset bigger than k
cannor be shattered either. Thus, mH(k) < 2k .

In other words, k is the minimum size of the dataset for which, mH(k) is not equal to 2k . Some
example of break points are explained below:

1 Consider 2D perceptrons. From the previous section, we know that the perceptrons cannot classify
the points for all arrangements of the number of points is 4 (and by extension, greater than 4).
Therefore, the break point for the 2D perceptrons is 4.

2 For positive rays, if the dataset has a single point, we can classify it as belonging to either +1 class
or -1 class (dichotomy is 2, which is equal to 21). However, for the dataset with more than 1 point,
the number of dichotomies reduce to (k+1), which is smaller than 2k . Hence the break point is 2.

3 In case of positive intervals, we can see that the expression derived in the previous sections is equal
to 2k while kε{1, 2}. Therefore, the break point is 3.

4 Convex sets always have dichotomy of 2k . Therefore, their break point is ∞.

4 Proof that mH(N) is a polynomial

The growth function, mH(N) can be used to replace M if it can be proved that it is a polynomial function.

mH(N) can be proved to be a polynomial if the following condition is satisfied:

mH(N) ≤ some quantity ≤ some quantity ≤ a polynomial.

Let B(N,k) be the maximum number of dihotomies with N points and break point k. Since, mH(N) =
B(N, k), we can prove that mH(N) is linear if B(N,k) is linear. Consider the example shown in Figure
6:

Figure 6: A sample dataset considered for proving B(N,k) is linear

There are N columns in the data labelled as X1, X2, ...XN . Let XN be the output class for this
dataset. The subset S1 has all the rows where XN has either a +1 or a -1. Let the number of rows in S1
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be α.

Let the subset S2 have all the rows having only a +1 (subset S+
2 ) or the rows having only a -1

(subset S−2 ). Let the number of rows in S+
2 and S−2 be β for both these subsets. Therefore, the total

number of rows in subset S2 is 2β. Therefore, the total number of dichotomies of this dataset is given
by, B(N, k) = α+ 2β.

Let’s consider the first N-1 columns (i.e., all columns excluding N th column) and all rows of S1 and
S+
2 . These points are shattered by the break point k as we have just removed a unit from the data and

the points still map to either +1 or -1 in XN . This implies, α+ β ≤ B(N − 1, k).

Consider only the S+
2 rows and first N-1 columns. As the data map to only a +1, they have a break

point of (k-1). Therefore, β ≤ B(N − 1, k − 1).

Now, we can replace the α+ 2β term in B(N,k) by,

B(N, k) ≤ (α+ β) + β ≤ B(N − 1, k) + B(N − 1, k − 1)

Figure 7: Proof that B(N, k) ≤ B(N − 1, k) + B(N − 1, k − 1)

In the Figure 7, consider B(2,2). The value is 3 which, is equal to the sum of B(1,2)(2) and B(1,1)(1).
Note that this distribution follows the Pascal triangle. This proves that mH(N) is less than, or equal to
some quantity.

To prove that mH(N) is less than, or equal to a polynomial we assume,

B(N, k) ≤
k−1∑
i=0

(
N

i

)

where,
∑k−1
i=0

(
N
i

)
is the binomial distribution. This relation is proved by Mathematical Induction in

the following section. Note that the third line is similiar to B(N, k) ≤ B(N − 1, k) + B(N − 1, k − 1).

5



4.1 Proof by Mathematical Induction

k−1∑
i=0

(
N

i

)
=

k−1∑
i=0

(
N − 1

i

)
+

k−2∑
i=0

(
N − 1

i

)

= 1 +

k−1∑
i=1

(
N − 1

i

)
+

k−2∑
i=1

(
N − 1

i

)

= 1 +

k−1∑
i=1

(
N − 1

i

)
+

k−1∑
i=1

(
N − 1

i− 1

)

= 1 +

k−1∑
i=1

[(
N − 1

i

)
+

(
N − 1

i− 1

)]

= 1 +

k−1∑
i=1

(
N

i

)

=

k−1∑
i=0

(
N

i

)

(1)

4.2 Examples of mH(N) in polynomial form

The polynomial form of the growth functions of examples discussed in previous sections are as follows:

1. Positive rays: the break point is 2.

→ mH(N) ≤
2−1∑
i=0

(
N

i

)
=

1∑
i=0

(
N

i

)
= 1 +N

2. Positive intervals: the break point is 3.

→ mH(N) ≤
3−1∑
i=0

(
N

i

)
=

2∑
i=0

(
N

i

)
= 1 +

1

2
N +

1

2
N2

3. 2D Perceptrons: the break point is 4.

→ mH(N) ≤
4−1∑
i=0

(
N

i

)
=

3∑
i=0

(
N

i

)
= 1 +

5

6
N +

1

6
N3

From these examples, we can conclude that the growth function is a polynomial function of ’N’ and is
a suitable candidate to replace ’M’. The proof that mH(N) is a good replacement of M will be discussed
in the next class.
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