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1 SVM optimisation problem

For SVM the optimisation problem is :

Min
1

2
WTW (1)

subject to constraints

yi(W
Txi + b) >= 1 (2)

∀(xi, yi) (3)

Where W is the coefficient of the hyper plane of SVM, b is the bias and (xi, yi) is the coordinate of the
training data.
The primal form of the above mentioned inequality constraint optimization problem(according to Lagrange
multiplier method) is given by

Lp =
1

2
WTW − Σn

i=1αi(yi(W.xi + b)− 1) (4)

where αi ’s are called Lagrange multipliers.Lp is called the primal form of the Lagrangian optimization
problem. It can be seen from Figure (1) that the orange data points which are closest to the hyper plane
only contribute to equation (4) as for only these 4 orange data points αi > 0 and for all the other data points
αi = 0.
Dual Formulation of Optimization Problem
To minimize the Lagrangian, we must take the derivative of Lp with respect to W, b and set them to zero.

δLp

δW
= 0⇒W = Σn

i=1αi.yi.xi (5)

Figure 1: Lagrange multipliers values for training data
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δLp

δb
= 0⇒ Σn

i=1αi.yi = 0 (6)

From above two equation we get dual form of Lagrangian LD as

LD = Σn
i=1αi −

1

2
Σi,jαi.αj .yi.yj .xi.xj (7)

There are key differences between primal (Lp) and dual (LD) forms of Lagrangian optimization problem as
follows.

• Lp involves a large number of parameters namely W, b and αi ’s. On the other hand, LD involves only
αi ’s, that is, Lagrange multipliers.

• Lp is the minimization problem as the quadratic term is positive. However, the quadratic term in LD

is negative sign, Hence it is turned out to be a maximization problem.

• Lp involves the calculation of W.x, whereas LD involves the calculation of xi.xj . This, in fact, advan-
tageous, and we will realize it when we learn Kernel-based calculation.

2 Classification in SVM :

Let the equation of the hyper plane for separating the two class is

WTx+ b = 0 (8)

By training the value of W and b will be found. Let Xnew be a text data point which is required to be
classified. So if WTxnew + b > 0 then xnew will be classified as positive class and if WTxnew + b < 0 then
xnew will be classified as negative class.

3 Issues of SVM

• Classes are not linearly separable.

• Multi class classification.

4 SVM classification for non separable data

A linearly not separable data can be classified using Linear SVM with soft margin. Figure (2) shows a set
of data which are linearly separable and figure (3) shows a set of data which are linearly non-separable.

4.1 Linear SVM for Linearly Not Separable Data

• A linear SVM can be refitted to learn a hyperplane that is tolerable to a small number of non-separable
training data.

• The approach of refitting is called soft margin approach (hence, the SVM is called Soft Margin SVM),
where it introduces slack variables to the inseparable cases

• More specifically, the soft margin SVM considers a linear SVM hyperplane (i.e., linear decision bound-
aries) even in situations where the classes are not linearly separable.

• For soft margin we rewrite the optimization problem as follows.

minimise
1

2
WTW (9)
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Figure 2: Linearly separable

Figure 3: Linearly non-separable
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Figure 4: : Interpretation of slack variable ξ

subject to W.xi + b >= 1− ξi if yi = +1

and W.xi + b <= −1 + ξi if yi=-1

where ξi >= 0

• Thus, in soft margin SVM, we are to calculate W, b and ξ as a solution to learn SVM.

• Figure (4) shows an interpretation of ξ, the slack variable in soft margin SVM

• ξ provides an estimate of the error of decision boundary on the training example X.

• The soft margin SVM should impose a constraint on the number of such non linearly separable data it
takes into account.This is so because a SVM may be trained with decision boundaries with very high
margin thus, chances of misclassifying many of the training data.If the increase margin is increased,
more points will be misclassified.Thus, there is a trade-off between the length of margin and training
error.To avoid this problem, it is therefore necessary to modify the objective function, so that penalizing
for margins with a large gap, that is, large values of slack variables.

• The modified objective function can be written as

f(W ) =
1

2
WTW + cΣn

i=1ξ (10)

where c is user specified parameters representing the penalty of misclassifying the training data.

• The Lagrange multiplier method to solve the inequality constraint optimization problem is as follows:

L =
1

2
WTW + c.Σn

i=1ξ − Σn
i=1αi(yi(W.xi + b)− 1 + ξi)− Σn

i=1λi.ξi (11)
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Figure 5: Transformation of a non-linearly separable problem into a linearly separable problem.

Here, αi ’s and λi ’s are Lagrange multipliers.
The inequality constraints are:

ξi >= 0 (12)

αi >= 0 (13)

λi >= 0 (14)

Σn
i=1αi(yi(W.xi + b)− 1 + ξi) = 0 (15)

λi.ξi = 0 (16)

4.2 Non-Linear SVM

In order to work with non-linear decision boundaries the key idea is to transform xi to a higher dimension
space Figure (5) using a transformation function , so that in this new space the samples can be linearly
divided. In a nonlinear SVM, the trick is to transform non-linear data into higher dimensional linear data.

5 Multiclass Classification:

When there are multiple classes then for multiclass classification, the same principle is utilized after breaking
down the multi classification problem into multiple binary classification problems.
A single SVM does binary classification and can differentiate between two classes. So that, according to the
two breakdown approaches, to classify data points from m classes data set:

• In the One-to-Rest approach, the classifier can use m SVMs . Each SVM would predict membership
in one of the m classes. In figure (6) there are 4 classes so here 4 SVMs are being used.

• In the One-to-One approach, two pairs of classes are selected at a time and a binary classifier trained

for them. This is done for every possible pair of classes thus there are m(m−1)
2 of them where m is the

total number of classes. Figure(7) shows an example of one-to-one approach
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Figure 6: One-to-Rest SVM Multiclass classification

Figure 7: One-to-One SVM Multiclass classification
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