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1 Introduction

We are given with a feature space, say X has attributes x1 and x2, so certain
points can be plotted as :

Figure 1:

f : X → Y = +1or − 1

Effectively, it is a supervised learning problem and binary classification problem.
Let’s say the discriminant used for classifying the data can be a linear model
(denoted by red) or by using neural network (denoted by blue) in fig:2

The problem we tackled in terms of classification is called Discriminant
Analysis. Here, we are to focus on linear discriminant analysis.

2 Linear Discriminant Analysis

Among all the linear discriminator that can be drawn , how to know which one
does the best job at classification.[Fig:3] Any linear discriminator can be given
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Figure 2:

as w1x1 + w2x2 + b = 0.
For any new point,xn =< a1, a2 >

w1a1 + w2a2 + b ≥ 0→ +1

w1a1 + w2a2 + b > 0→ −1

The concept that is followed is that the discriminator line passing through ex-
actly middle of the both class is best.
As,

WTX + b ≥ 0→ y = +1

WTX + b < 0→ y = −1

For a point i :
yi(w1xi1 + w2xi2 + b) ≥ 0

2.1 How is the ”middle” defined ?

For a training point xi, the perpendicular distance of xi from the discriminator
line is given as[Fig 4] :

di =
|w1xi1 + w2xi2 + b|√

w2
1 + w2

2

The goal is to maximize the minimum distance of the points from the dis-
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Figure 3:

Figure 4:

criminator.

MAX[min(di)]

=MAX[mini
|w1xi1 + w2xi2 + b|√

w2
1 + w2

2

]

It is to be noted that the optimization depends only on the numerator.
The w1, w2 and b are chosen in such a way that the xi for which the distance
is minimum, the minimum distance (numerator) becomes 1.
Hence the optimization boils down to :

Max(
1√
||W |||

)

where ||W || = WTW
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So now the minimum distance for any point from the discriminator is 1 :

yi(w1xi1 + w2xi2 + b) ≥ 1

3 Primal Optimization problem

Minimize(
1√
||W |||

)→MAX(
0.5√
WTW

)

subject to :
yi(W

TXi + b) ≥ 1

Now at any point of time, there will be two points that will support the line to
stand in the middle which leads to the concept of Support Vector Machine.

Figure 5:

4 Dual Optimization problem

For and all each Xi,∃αi such that constraints: αi ≥ 0,

MaximizeL =
1

2
WTW −

N∑
i=1

αi(yi(W
TXi + b)− 1)

Maximizing
∂L

∂W
= 0

⇒W −
N∑
i=1

yiαiXi = 0
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⇒W =

N∑
i=1

yiαiXi

∂L

∂b
= 0

⇒
N∑
i=1

αiyi = 0

4.1 What does Lagrange’s multiplier trying to do ?

Figure 6:

The points Xis are multiplied with αi ≥ 0 and then with yi(label). It means
it is trying to enhance the vectors in all these directions and trying to find the
resultant vector from them.
Note that

• Not all αi > 0, only the ones from support vectors are greater than zero,
hence it is computationally very efficient.

• Once W is found, finding b is very easy.

WTX + b = 1

b = 1−WTX

where W denotes weight and b denotes bias.

So the maximized value of L is :

L =
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(Xi.Xj)−
N∑
i=1

N∑
j=1

αiyiαjyj(Xi.Xj)− b
N∑
i=1

αiyi +

N∑
i=1

αi
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As b
∑N

i=1 αiyi is zero , so

L =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(Xi.Xj)

The computation of the term 1
2

∑N
i=1

∑N
j=1 αiαjyiyj(Xi.Xj) is easier if we pre-

compute yiyj(Xi.Xj). The matrix in which this is pre-computed and stored is
called Hessian matrix and is denoted by H.
Therefore, now that we have found = sumN

i=1αiyiXi and
∑N

i=1 αiyi = 0 , let’s
define the following :

λ = [α1α2...αN ]1×N

U = [111...1]1×N

Then L can be written as :

L = λUT − 1

2
λHλT

This equation is solved using Quadratic programming as L is quadratic w.r.t α.
After solving this using quadratic programming, we obtain the values of αis. By
plugging the values of α in the equations the values of W and b are obtained.

W =

N∑
i=1

αiyiXi

b = 1−WTX
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