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1 First Slide

Figure 1: First Slide .

We have a mandatory x0 attribute that is equal to 1 and we have a set of attributes from x0 to xd, where
d is the dimensionality. We provide the output sum which is nothing but summation of i from 0 to d.
Weight w0 to wd are the weights with respect to each attribute. This is what we call Linear Regression.

Further we went on and included a new thing that is a threshold value.

But Why we did it?

To know the class i.e two class classification called linear classification.

With respect to weights which are free variable in our case. We try to minimise the average error
which we call the error being produced by N number of training examples, where each of h(xn) gives
hypothesis and actual training examples output from unknown function yn which is error.

In case of linear regression we got the error
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Figure 2: Slide 1.

Now it can be solved using two ways:

1. Direct Step

The closed-form solution may (should) be preferred for “smaller” datasets – if computing (a
“costly”) matrix inverse is not a concern. For very large datasets, or datasets where the inverse of
XTX may not exist (the matrix is non-invertible or singular, e.g., in case of perfect multicollinear-
ity), the GD or SGD approaches are to be preferred. The linear function (linear regression model)
is defined as:

y = w0x0 + w1x1 + ........+ wmxm =

m∑
j=0

WTX

where y is the response variable, x is an m-dimensional sample vector, and w is the weight vector
(vector of coefficients). Note that w0 represents the y-axis intercept of the model and therefore
x0=1. Using the closed-form solution (normal equation), we compute the weights of the model as
follows:

w = (XTX)−1XTY

2. Gradient Descent Approach

• Batch Gradient Descent: In Batch Gradient Descent, all the training data is taken into
consideration to take a single step. We take the average of the gradients of all the training
examples and then use that mean gradient to update our parameters. So that’s just one step
of gradient descent in one epoch.

• Stochastic gradient descent: The word ‘stochastic‘ means a system or a process that is
linked with a random probability. Hence, in Stochastic Gradient Descent, a few samples are
selected randomly instead of the whole data set for each iteration.

2



2 Second slide

Figure 3: Slide 2.

Logistic regression: In logistic regression, the output of the hypothesis is nothing but the probability
of output being 0 or 1. Mostly, Logistic Regression is used when the dependent variable (target) is
categorical. We get the two values because of the nature of the curve and the threshold value. For theta
of S, we can take sigmoid function or tanh function .

1. Sigmoid function: This function looks like smooth curve. It is linear in both the ends and in
the middle portion it looks somewhat linear. In classification, we take decisions based on whether
value is greater than 0.5 or less than 0.5.

Figure 4: Sigmoid Function.

2. Hyperbolic tangent function(tanh): tanh is also like logistic sigmoid but better. The range of
the tanh function is from (-1 to 1). tanh is also sigmoidal (s - shaped). The advantage is that the
negative inputs will be mapped strongly negative and the zero inputs will be mapped near zero in
the tanh graph.
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Figure 5: tanh Function.

Predicting heart attacks is an application where logistic regression can be used as after some age we
have a higher chance of heart attack that is value towards 1 and less or no chance of heart attack that is
value towards 0.

Another popular example which we discussed earlier is the movie rating. Where we have user attributes

ui1ui2, .....uik

and movie attributes as
vj1, vj2, .....vjk

Based on the pair we get the movie ratings between 0 and 1. We have eij which is the error for each
training dataset.

Figure 6: movie rating example

Question: How we can we be sure that SGD takes on example at a time ?
Answer: For this we have a term called ‘epoch’. Cross validation
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3 Third Slide

Figure 7: Third slide

Following figure below, represents the units of neural network where we take summation follow it up with
our logistic and given some input.

Figure 8: Units of Neural Network

When we talk about the multilayer perceptron, which can differentiate the following negative and
positive symbols. You can easily see that one single line can not differentiate them, so we need atleast
two different lines. In previous class we used h1 and h2 for differentiating the symbols as you can see in
the below figure clearly.

Figure 9:
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We have a question in last class where we have data points as shown in figure below, so how can we
find the target concept?

Figure 10:

Now we have to concept using the neural network or multilayer perceptron. We can do that using 4
perceptrons, 8 perceptrons or 16 perceptrons. As we use more perceptrons, it makes the neural network
more deeper and complex which can be seen in figure below. In every case we get some error but with
more perceptron optimization and generalization becomes very difficult.

Figure 11:

Now we need to see what will be our weights. In single level the error will be:

Figure 12:
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4 Fourth Slide

Figure 13:

In Multi layer we have different layers which gives an output. Input layers are x0, x1 upto xd. We have
l number of layers staring from 0 where first is the input, middle one’s are the hidden layers and last is
the output layer. We have a layer variable 1¡= l¡=L. Weights are bound to the layer as it moves to like
one node i to other j will be having weight wlij J boundary is the number of output that is there in layer
L upto 1. Each node is blown up as Sum unit followed by theta unit as shown below

Figure 14:

The bottle neck is, We need to compute the following for every i,j and l. Forward pass for error and
backward pass for delta updation.How to compute we will see in next slide.

Figure 15:
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5 Fifth Slide

Figure 16: Fifth slide

For computing δe(w)

δwl
ij

we will take the reference of the following slide below.

Figure 17:

A trick for efficient computation:

δe(w)

δwlij
=
δe(w)

δslj
∗

slj
δwlij

We have
slj
δwl

ij
= xli

−1 We only need δe(w)

δslj
= δlj

δ for final layer

δlj For the final layer l=L and j=1

δl1 =
δe(w)

δsl1

e(w) = (xL1 − yn)2
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xL1 = θ(sL1 )

θ(S) = 1 − θ2(s)

Back propagation of δ :

Figure 18:

δli
−1 =

θe(w)

θsli
−1

=

dl∑
j=1

δe(w)

δslj
∗

δsLj
δxli

−1
∗ δx

l
i
−1

δsli
−1

=

dl∑
j=1

δlj ∗ wilj ∗ θ(sli−1)

δli
−1 = (1 − (xli

−1)2)

dl∑
j=1

wi
l
jθ
l
l
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6 Sixth Slide

Figure 19:

Backpropagation Algorithm

1. Initialize all weights wi
l
j at random.

2. for t = 0,1,2,... do

3. Pick n 1,2,··· ,N

4. Forward: compute all xlj

5. Backward: compute all δlj

6. Update the weights: wi
l
j < −wilj − nxli

−1δlj

7. Iterate to the next stop until it is time to stop.

8. Return the final weights wi
l
j

Figure 20:
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