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1 Previously

Figure 1: Summary? of Previous Class

We have covered certain weapons of machine learning in our previous classes. Which are as follows:
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1.1 Linear Regression

Linear Regression fits a linear model with coefficients w = (w1, . . . , wp) to minimize the residual
sum of squares between the observed targets in the dataset, and the targets predicted by the linear
approximation.

h(x) =

d∑
i=0

(wixi)

The in-sample error, or the error while training is calculated as

Ein(w) =
1

N
(yn −

d∑
i=0

(wixni))
2

On minimizing Ein to find the value of W. We find W = [(XTX)−1XT ]Y

So It’s just a One-step learning.

1.2 Linear Classification

The prime objective of Linear Classification problems is to create a hyper-plane differentiating the
two classes.The sum WTX is passed by a hard threshold function, And the result thus obtained
classify our data.

1.3 Logistic regression

In Logistic regression instead of the threshold being too hard we introduced a soft threshold
function i.e Sigmoid/Tanh. We can find the best hypothesis by converting this problem into
an optimization problem w.r.t sample set. Now the error will be Cross-Entropy error in ML
terms. Which is not One step learn-able. We can minimize the error by Gradient Descent(Batch,
Stochastic).

So all these concepts discussed are very much of our ingredients towards moving into Artificial Neural
Network formulation.

2 Biological Neuronal Network- Inspiration for ANN

When we talk about Artificial Neural Network, it draws the analogy from biology. Neurobiology says
that we have dendrites that usually sense some information, processes through its nucleus and sends back
to its axon terminals, and provides it back.

Figure 2: Biological Neuron
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Essentially almost 1011 number of neurons are present in the human body. Each neuron is connected
to 104 other neurons on average. People have experimented that to recognie someone it usually takes
10−1 sec. It has also been experimented in biology that 10−3 is the switching time of the neurons. So
more than 100 neurons are fired/used for recognition.

Inside the human body biological neural network looks like as given in figure 3.b.

Figure 3: Biological Inspiration

Based on these biological concepts and the way input and output are processed, people thought about
that why not we resemble such kind of concept in terms of mathematical nodes which will again be
connected to some other just like a biological structure and process something. It will have some inputs
which are values of attributes and have some output. In mathematical jugglery, these nodes could be a
sum followed by a threshold. So when we consider node after node essentially in the input space that is
given, one neuron will provide us one separation going with that with the other set of input from other
neurons will give us other separation. Another neuron will give us another separation. So we can extract
a set of the line to separate regions.

3 Linear Classification: Perceptron(linear discriminator)

As we know in linear classification problem we try to find out unknown f from attribute set X which
produces value Y such that f : X− > Y , Where Y could be +1 or -1(assume here 2 class classification).
If it is very well separated by a single line therefore linear separator or Perceptron is the exact model
that could be used. If it is not separable by linear line then either we will use some other ML algorithm
or we may use this similar kind of linear classification multiple of them in the staggered fashion to form
an Artificial Neural Network.

Doubt: Why only Perceptron is used as a basic model?
Perceptron is foundational model to separate two classes and using it multiple times we can just
segregate any pores inside the data set.
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Figure 4: A linear classifier aims to find a single line that differentiates 2 classes.

As we know that linear predictor is just the threshold of sum.

h(x) = sign(

d∑
i=1

wixi)

Now we resort to our same optimization problem where we try to minimize our in-sample error. Here
in-sample error will be

Ein(w) =
1

2

N∑
n=1

[yn − sign(

d∑
i=1

wixni)]
2

So, now the problem boils down to reduce the above error in every iteration. If the objective function
is smooth, we can gradually change the feature weights after every iteration based on our Ein.

Figure 5: Gradient Descent

So our weigh update rule can be written as

wt+1 = wt + ∆wi
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Where

∆wi = −η ∂Ein

∂wi

Now to find ∆wi, On differentiating Ein(w) w.r.t wk we get

∂Ein

∂wk
=

N∑
n=1

(yn − sign(

d∑
i=1

wixni))(−sign(xnk))

Now if we say yn is our target output ’t’ and sign(
∑d

i=1 wixni) is our observed output ’o’ then above
equation can be written as

∂Ein

∂wk
=

N∑
n=1

(t− o)(−xnk)

So now our weight update rule equation will be

wt+1 = wt + η

N∑
n=1

(t− o)(xnk)

This is the how we will update the weights so that we minimize the error.
This we are doing it together(summation) so it’s a Batch Gradient Descent.

Note : Since here while updating weight we need to differentiate the threshold function so the
threshold function should be something that is differentiable. But in the case of the linear classifier
(discussed above), the threshold function (sign) is not differentiable. So now we will move to the
concept of Perceptron where this threshold function is differentiable. Instead of the sign function,
we will have a differentiable θ(or f) function in Perceptron.

Figure 6: Perceptron
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4 Artificial Neural Node

An Artificial Neural node have a summing unit followed by a soft threshold unit to get our hypothesis
of x i.e h(x). Which is nothing but θ(S). Here either think θ(S) as tanh(s) or 1

1+exp−s or any other soft
threshold function.

Figure 7: Artificial Neural Node

Exercise : Find ∆Ein(w) for the Neural Node given in figure 7?.

Let us see some examples of Artificial Neural Node. Here we will try to learn few Boolean Gates with
the help of Perceptron.

4.1 Learning Boolean AND

Boolean ’AND’ can be realized by using a single-layer Perceptron.
For the input x1 and x2 and weights w0 , w1 and w2 the hypothesis can be written as

h1 = (w0 + w1.x1 + w2.x2)

We can realize the Boolean ’AND’ gate with the help of Perceptron just by learning appropriate weight
parameters.

Figure 8: Realization of Boolean AND by single-layer Perceptron

Here to realize AND the possible values of weight parameters can be w1 = 1 = w2 and w0 = −1.5
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4.2 Learning Boolean OR

Just like AND Boolean ’OR’ can also be realized by single-layer Perceptron. Unlike AND, if we set w0

to -0.5 in the above Neural node then the same Neural Node will behave as an OR gate.

Figure 9: Realization of Boolean OR by single-layer Perceptron

So we can see from the above figure that the same separator line by just dragging it toward origin
our Perceptron will behave as ’OR’ gate. We can drag or move the separator line by just changing w0.

Note Here we put values of weight intuitively. But effectively we can learn these weights by Gradient
Descent.

Limitation of linear predictor : If the data is not linearly separable then there is a chance of
failure.

Now let us consider an example to handle the situation where linear predictor might fail.
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4.3 Learning Boolean XOR

Let’s consider this example of Boolean XOR.

Figure 10: Learning Boolean XOR

As evident from the above figure the red and blue are not linearly separable anymore. Because there
is no single line that can separate both of them.

Figure 11: Multiple Linear Separator(h1, h2) to
classify Red and Blue dots

We try to combine one or more hypotheses(or
try to combine one or more linear separators).
We have h1 and h2.

So effectively the combined hypothesis can be
written as

h = h1.h2 + h̄1.h̄2
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We already have a single node Perceptron for each of h1 and h2. We know the Perceptron for ’AND’
and we know the Perceptron of OR.
Let Us construct classifier h, which is not linear anymore but a combination of linear classifier one after
another. So first merge h1.h2(AND) and h̄1.h̄2(AND) by an OR. And h̄1 can be obtained by multiplying
-1 to weights of h1.

Figure 12: Realization of Boolean XOR by Multi-Layer Perceptron

As we can see from figure 12, the network has an Input layer, Hidden layers, and output layer.
This is called Multi-layer Perceptron. But essentially we know it as a Neural Network and this variant
is called Feed-forward Neural Network. Feed-forward because it is always feeding in the forward direction.

So this is all about Deep Learning Fundamental and all.
Now we have a problem to think.

Figure 13: Non-linear distribution

Think!

Q : How to categorize +’s from -’s us-
ing Neural Network as given in figure
13?
Hint: Let’s say it’s the perfect circle as the
target function(f) output . Which is not
known to us. We need to approximate this ’f’
(circular function) with our hypothesis ’h’.

Note 1. This scribe is based on lecture taught by Prof. Aritra Hazra on 05-feb-2021 in Machine Learn-
ing(CS60050) course.
2 All the figures in this document are taken from either handout-07a or Slide-07 uploaded on Machine
Learning(CS60050) course website.
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