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1 INTRODUCTION

In Machine learning we explore different ways of how to predict from given
data. We have looked into different algorithms like decision trees, Naive
Bayes Classifier and Bayesian Networks. These algorithms are part of super-
vised learning where the data and the labels are given beforehand.

2 PARAMETRIC LEARNING:

Previously we have derived MAP from MLE and a prior where the prior is
determined from µ and σ which are known parameters. Also in MLE we try
to determine the argmax θ which resembles the data probability. These are
learned parameters thus the algorithm is said to be based on parametric
learning.
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Figure 3.1: Histogram plot of fish length

3 NON-PARAMETRIC LEARNING

We will look into how we can predict directly from data instead of learning
parameters. Let us consider a problem where we are given data of 3 types
of fishes namely Hilsa, Tuna and Shark. The MAP values represented by
P(H|L), P(T|L) and P(S|L) respectively.

3.1 OBJECTIVE:

Now given a new fish of length l we need to find the type of the fish.

3.1.1 APPROACH:

If the length of the fish is l = 2ft we assume a length δ = 0.1 and we get a
window of l ±δ that is 1.9 to 2.1. Then we see in the data for this window
how many fishes are Hilsa, how many are Tuna and how many are Shark
and compute the probability of each type of fish. The probabilities for Hilsa,
Tuna and Shark respectively are fH = NH

N , fT = NT
N and fS = NS

N where N is
the total number of fishes. We take a vote of the largest probability and then
predict this type as the type for the new fish.

This process is often known as the Approximate MAP as it is dependent
on the relative count of the elements.

We can extend this to 2 dimensions say X and Y for length and width of
the fish.
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Figure 3.2: Length and width of fishes

Figure 3.3: K Nearest Neighbour

Here we for an unknown fish we consider a circle and then find out in this
circle how many fishes are Hilsa, how many are Tuna and how many are
Shark and calculate the probability in the same way.

3.2 NEAREST NEIGHBOUR

The principle is to create a boundary and see which of the neighbors are
most frequent and then classify. We can consider the distances and then
take the top K shortest distances. This is the intuition behind the K-Nearest
Neighbour algorithm.

The distance between 2 points can be calculated in a number of ways. For
instance let us consider the distance is equal to the euclidean distance. The
value K is a user chosen parameter. The figure3.3 shows different values of
K=1,2,3 We can see when K is 1 the new point is classified as -ve. When K=2
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Figure 3.4: Caption

there is a tie and when K=3 the point is classified as +ve.
If we need to use K=1 there are efficient algorithms to do it. In computa-

tional geometry we have a Voronoi diagram were we can cluster the entire
space(tessellation) such that given any point in the space we can directly
get the nearest neighbour. So this is fairly straight forward as during test
time we don’t have to calculate the nearest distance for every point. This
helps us save a lot of time during testing.

3.3 MATHEMATICAL FORMULATION

Let f is a unknown labeling function to label the training examples.
f̂ (q) = ar g maxv∈V =∑k

j=1δ(v, f (x j )

Where f (xi ) is the label of training example xi .
δ(a,b) = 1, a = b and δ(a,b) = 0, a 6= b otherwise.
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3.4 DISTANCE WEIGHTED K-NEAREST NEIGHBOUR

Instead of just directly taking the top K nearest point contribution, we can
multiply a weight to each point’s contribution so that nearby points have
more contribution than the far away points. The weight can be inverse of
the distance of the new point q from the other training example points.

f̂ (q) = ar g maxv∈V
∑k

j=1
1

d(q,xi j )2δ(v, f (x j )

So further the point the lesser contribution it will have.

Generally if the weight of each point is W j we have the formula
f̂ (q) = ar g maxv∈V

∑k
j=1 W jδ(v, f (x j )

3.4.1 CONTINUOUS VALUES

For continuous values we take the weighted average of the k neighbours.
For example if we want to calculate the temperature on a particular day ex-
ample. January 28 given previous 100 years of temperature data for January
28.

f̂ (q) =
∑k

j=1 W j f (xi j )∑k
j=1 W j

3.5 WHAT IS A GOOD ’K’

Too Small: If the value of K is too small the prediction is based on few points
and may be affected by locality error. So noise may detoriate the perfor-
mance.

Too Large: If the value of K is too large the prediction will be influenced
by the Prior(MAP). It will be too global in this case.

There is no fixed way to calculate the value of K but generally in practice
we take k =p

N where N is the number of training examples. If there are
lesser number of examples then k = N

10 is used. It is an open problem to find
the value of K.
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Figure 3.5: Distance Metrics

There are other ways of calculating the distance between 2 points namely
Minkowsky, Manhattan, Quadratic, Correlation, Chi-square, etc.3.5

Which is a better distance metric depends on the data and the domain. It
is always better to try out different metrics and figure out which works best
for the data.

3.6 ISSUES WITH KNN ALGORITHM

3.6.1 CURSE OF DIMENSIONALITY

Let us consider 2 pair of points (q,x) and (q,y) in multidimensional plane
and measure the euclidean distance between them. Refer figure 3.6

We can see the euclidean distance of both the points are same and equals
to

p
2. We can see that distance between x and q is much smaller than y
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Figure 3.6: Euclidean Distance

and q. As a result both the points x and y are considered to be at equal
distance from q which is clearly not correct. This problem arises in higher
dimensional planes and known as the curse of dimensionality.

3.6.2 SCALE OF ATTRIBUTES

The attributes of the data may have different range. For example a medical
data-set may have attributes age, blood-sugar, blood-pressure, etc. Here the
value of age is between 0-100, blood sugar is between 50 to 200 and some
other attribute may have data ranging from .01 to .09

In such a case we need to normalize the data such that all the values are
between a fixed range say 0-1. The way we can do this is by calculating
the mean and standard deviation of each attribute and then calculate the
normalized value z where

zi j = xi j−µi

σi
µi = mean(Xi )
σi = St and ar dDevi ati on(Xi )

4 EXAMPLE

From given data in figure 4.1 let us try to figure out the class of a unknown
animal with the help of the features.

7



Figure 4.1: Example
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Here number of training examples N=20 so we can take K=
p

20 or K=5 to
prevent a tie

Now the testing data has attributes GiveBirth=Yes, CanFly=No, LiveIn-
Water=Yes, HaveLegsa=No. So we look at examples with similar attribute
values.

We find closest match with salmon, whale, leopard shark, eel and dolphin
which sums to 3 non-mammals and 2 mammals.

Finally we predict the class of the animal to be non-mammal.

5 SUMMARY

• In non-parametric learning we do not need to learn any parameters.

• Given the raw data we find the top K points which are nearer to the
target point that we need to predict. We give the label which has the
highest count for the K points.

• The distance is weighted so that nearer points has a greater influ-
ence. There are different ways to calculate distance like Euclidean,
Manhattan,etc.

• The value of K is user defined. Too small value will lead to localized
errors, too large value will be biased to the prior. Practically

p
N is

used for large training examples(N) or N
10 for lesser number of training

examples.

• There are 2 issues with the KNN algorithm

– Curse Of Dimensionality

– Computational Complexity
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