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Recapitulation of the previous week's agendas 

 

1. Probabilistic notion of joint probability distribution 

-It is computationally very expensive because for n attributes, there will be 2^n entries in 

Joint Probability Distribution table (JPDT) 

- Data sparsity:  This problem arises due to lack of data to fill up all the 2^n entries of JPDT 

- In reality, we need to deal with lakhs of attributes. In that case, the number of entries in 

JPDT will be huge and it will be tough to get all the data. The problem of data sparsity will 

be manifold. 

 

2. Solution to the above problem: We can be smart in 2 ways- 

- Maximum Likelihood Estimation (MLE) and Maximum Aposteriori Estimation 

(MAP) : We may not get all the probabilities but we have to estimate it smartly. 

- Bayesian networks ( This will be discussed in the lecture today) 

 

 

 



3. Bayes rule and Naive Bayes classifier  

- Bayes' rule, being used directly with all the attributes gives us an exponential number of 

estimates 

- We assume the notion of conditional independence inherent in Naive Bayes classifier 

where each attribute is assumed to be conditionally independent of the other and this reduces 

the estimate of probability drastically to a linear range of values. 

- After  assuming conditional independence, we can pre-estimate the probability using MLE 

and when a new attribute comes, we can classify it based on that easily.  

- In certain cases, the attributes possess continuous values for eg.  classification problem 

dealing with whether one has brain tumor or not from x-ray scan image. 

- In such cases, we approximate the continuous probability distribution using Gaussian based 

approximations. The algorithm to be used for Naive Bayes classifier is almost the same with 

the difference that we need to learn the value of mu and Sigma instead of learning each and 

every xi given yk. 

 

4. Theory of conditional independence 

- The theory of conditional independence is a strong assumption and it does not hold always. 

- Naive Bayes finds use in applications like spam filtering. 

 

5. Challenge is  not over yet 

- It will be great if we could relax the notion of conditional independence a bit. 

- Data sparsity will be obvious when we have to handle large number of attributes. So, a 

much structured representation of JPDT is desirable. 

- These 2 aspects will be handled in the lecture today. 
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2 definitions are applicable in this regard- 

 

1. Conditional independence: X is independent of Y given Z 

If X can take X1, X2, X3,...Xk values, Y can take Y1, Y2,...  values, similarly Z can take Z1, 

Z2,...  values. 

for all i,j,k  P(X=xi|Y=yj, Z=zk)=P(X=xi|Z=zk) 

This implies that for all i,j,k, probability of X=xi given Y=yj and Z=zk is equal to probability 

of X=xi given Z=zk. 

Alternate representation: 

P(X=xi, Y=yj|Z=zk)=P(X=xi|Z=zk)P(Y=yj|Z=zk) 

This implies that probability of X=xi, Y=yj given Z=zk is equal to X=xi given Z=zk multiplied 

by probability of Y=yj given Z=zk. 

These 2 definitions are equivalent. 

 

 



2. Marginal independence 

X is marginally independent of Y if for all i,j, probability of X=xi, Y=yj is equal to prob of 

X=xi , multiplied by probability of Y=yj. 

for all i,j P(X=xi, Y=yj)=P(X=xi)P(Y=yj) 

Another representation: 

Probability of X=xi given Y=yj is equal to probability of X=xi 

P(X=xi|Y=yj)=P(X=xi) 
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An example to illustrate the aforementioned ideas is given 

below- 

• Suppose you have stormclouds, lightning, rain, thunder and power cut( assuming, in 

India). 



• In Bayesian networks, we try to assume that whatever be the outcome, it is 

independent of the attributes 

• But, usually, this is not so. For eg, stormcloud may be reason for Rain or lightning. 

Rain may be a reason for power cut or lightning may be a reason for power cut. 

Lightning is definitely a reason for thunder but rain is not always the reason for 

thunder. 

• The attributes are represented as rows and relationships as edges. 

• A graph can be produced out of these causal dependencies. 

• This graph is DAG(Directed Acyclic Graph). 

• It is directed because a particular attribute is responsible for it to be directed to some 

other attributes. 

•  It is acyclic because it is not possible that stormcloud causes rain as well rain also 

causes stormcloud and vice versa or there could not be any cycle in the graph. 

• Such a network is referred to as the Bayesian network. 

• There are certain causal dependencies among the attributes, for eg, rain can only be 

caused by stormcloud, power cut can only happen if there is rain as well as lightning. 

• In the JPDT being constructed, every entry is equipped with a probability value for eg 

there is stormcloud, rain , power cut which is assigned probability 0.01. JPDT is 

complete and it has to specify all possibilities. But, in Bayesian networks, every 

attribute has  relationship with only its parents. 

•  Hence, every attribute will have its local table of joint probability distribution 

instead of a global table accounting all attributes. 

• In a local table, the parents of a node will be listed and for each possible value of the 

child attribute, a separate probability will be assigned. 

•  Now the local JPDT is attached with every node. 

• Bayesian network scores over the global JPDT by reducing the number of 

entries in the table because it involves only the parent attributes of a particular 

attribute eg.  in the local table for power cut, there are only lightning and rain, who 

are the parents of power cut. Hence, local JPDT for power cut contains 4 entries. 

 

Formal definition of Bayesian networks- 

  It is a graph containing sets of vertices and edges. 

  It is a directed graph. 

 Vertices are the set of attributes. 

  Edges represent the set of causal dependencies ( directed) parent of a node Xi 

is/are all the node(s) from where there is incoming edge to Xi. 

  There is a JPDT for each of the nodes ( attributes) Xi and its parents. 
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Graphical  representation of dependencies 

• There is a simple graph containing nodes X1, X2, X3, X4 and dependencies between 

attributes are shown by directed edges in the graph. 

• Probability of X1, X2, X3, X4 or. P(X1, X2, X3, X4)=P(X1).P(X2|X1).P(X3|X1,X2).P(X4| 

X1, X2 X3). 

o X1 is standalone ( not dependent on any event). Hence, probability of X1 can 

be expressed without any dependence on any other attribute ie. P(X1) 

o There is a directed edge from X1 to X2 which shows that X2 has a 

dependency on X1. Hence, to estimate the probability of X2, we have to 

consider the dependence of X2 on X1 ie. P(X2|X1). 

o Probability of X3 is dependent on X1 and X2 values. So, we can write 

P(X3|X1, X2). 

o Probability of X4 is dependent on X1, X2 and X3. Hence, we write P(X4|X1, 

X2, X3). 

o This follows from the chain rule and conditional independence factors. 

• Removal of edge from X2 to X4 implies that X2 and X3 are not conditionally 

dependent any more. 

• Rule: If there are 2 descendants of the same parent, if they are descended on different 

branches and if they do not share any dependency edge, then the 2 descendants are 

conditionally independent. 



• Similarly, if X2 and X4 are descendants of X1 , both descend from different branch 

and also do not share any dependency edge. Hence, X2 and X4 are conditionally 

independent ( after edge removal). 

• By definition of conditional independence, 

P(X|YZ)=P(X|Z) when X is conditionally independent of Y given Z. 

• In this case X4 is conditionally independent of X2. 

• This implies X2 vanishes from the term P(X4|X1,X2,X3) (since there is no conditional 

dependency between X4 and X2. 

• Each node has a local JPDT. Hence, the probability of each attribute can be computed 

from the partial JPDT and the conditional independence assumption. 

 

Let us refer Board 3 once again, 

 

 

 

• The fundamental rule of joint probability distribution of attributes X1, X2, 

X3,...,Xn is given as P(X1, X2,...,Xn)=∑iP(Xi| parent(Xi)) 

• Each P(Xi| parent(Xi)) can be obtained from the partial JPDT associated with that 

node. 

• Hence, the problem of data sparsity has been reduced by the smart use of causal 

dependency, local JPDT and notions of probability. 

• Following the above notion,  

P(S,L,┐R,P,T)=P(S)*P(L|S)*P(┐R|S)*P(P|L,┐R)*P(P|L) 

• We basically need to traverse the graph using any graph traversal algorithm and JPDT 

will pick up the value. 



• Bayes network for Naive Bayes 

• As per Naive Bayes'rule,   P(X1,X2,....,Xn|Y)=∑iP(Xi|Y)/P(Y) 

• The Bayes network corresponding to this rule will contain Y as the parent 

of each Xi ie. there will be edges from Y to each Xi. So, we have to 

calculate P(Xi|Y) from the local JPDT of each Xi and then divide the 

whole expression by probability of Y( Y is not dependent on any attribute) 

which will be obtained from the local JPDT of Y. 

• But it overlooks the dependencies between X1, X2, X3,.....,Xn which 

counts for a major drawback of Naive Bayes classifier. 

• Bayes network provides a much more compact representation of the 

dependencies between attributes. 

• If the graph changes,  the probability notions  of attributes ( as well as the 

dependencies among attributes) changes. 

• Bayes network is used for assessing causal relationships for eg. medical 

diagnosis of patients. 

• Demerits : Bayes network has a representational structure and 

substantial memory required to store the graph and we also need 

graph traversal algorithm for traversing the graph. 

• Bayes network is a much older concept as it is related to AI. 

• The colloquial term for Bayes network was Graphical models. 
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A study of tail-to-tail, head-to-tail and head-to-head structures 

 

Revisiting the definition of conditional independence- 

If P(XY|Z)=P(X|Z)P(Y|Z), we say X is conditionally independent of Y given Z. 

 

First graph(tail-to-tail structure)- 

• Is it possible to say that A and B are conditionally independent given C? 

• Applying Bayesian rule, 

• P(AB|C)=P(ABC)/P(C) 

• P(ABC)=P(A|C)P(B|C)P(C) (as per Bayesian network causal dependencies) 

• Now P(ABC)/P(C)=P(A|C)P(B|C)P(C)/P(C)=P(A|C)P(B|C) 

• This implies A and B are conditionally independent of each other. 

• Hence, P(AB|C)=P(A|C)P(B|C) 

• In this particular network structure A and B are conditionally independent of 

each other. 

• This network structure is referred to as tail-to-tail structure ( A and B are 2 

tails). 

 

 

Second graph (Head-to-tail structure) 

• Are A and B conditionally independent of each other given C? 

• P(AB|C)=P(ABC)/P(C) (as per Bayes' rule) 

• As per the network structure, P(ABC)=P(A)P(C|A)P(B|C) 

• P(ABC)/P(C)=P(A)P(C|A)P(B|C)/P(C)=P(A|C)P(B|C) 

• Hence, it is proved that alike tail-to-tail structure, in head-to-tail structure also, A and 

B are conditionally independent of each other given C. 

 

 

Third Graph (Head-to-head structure) 

• As per Bayes' rule, P(AB|C)=P(ABC)/P(C) 

• From Bayes' network, we observe, P(ABC)=P(A)P(B)P(C|A)P(C|B) 

• P(ABC)/P(C)=P(A)P(B)P(C|A)P(C|B)/P(C) 



=P(AC)P(B)P(C|B)/P(C) 

=P(A|C)P(B)P(C|B) 

• The above is not equal to P(A|C)P(B|C) 

• Hence for this structure A and B are not conditionally independent of each other given 

C. 

• Also, it is observed that A and B cannot be conditionally independent of each 

other if both are the causes of C. 
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D separation algorithm 

• This algorithm is used to determine conditional independence. 

• A is said to be conditionally independent of B given C if the node C sits between the 

attributes A and B. 

• In all 3 cases, we can say A is conditionally independent of B given C. 

 

Graph structure 

• Is X1 conditionally independent of X3 given X2? 

o Yes, because X1, X2, X3 give rise to a head-to-tail structure. 

o In head-to-tail structure head and tail are conditionally independent of each 

other. 



o Hence X1 and X3 are conditionally independent of each other given X2. 

 

• Is X1 conditionally independent of X4 given X2? 

o There is an edge from X1 to X2. 

o There is no edge from X4 to X1 or X2. 

o Hence, there is no scope of head-to-head structure arising here. 

o Hence, X1 is conditionally independent of X4 given X2. 

 

• Is X1 conditionally independent of X4 given X2, X3? 

o Consider the nodes X2 and X3 being merged. Let it be X23. 

o Hence there are edges from X1 to X23 and X4 to X23(shown below). 

o A head-to-head structure is created with X1 and X4 being 2 heads and 

edges directed from X4 to X23 and from X1 to X23. 

o Hence, X1 is not conditionally independent of X4 given X2, X3. 

 

 

 

 

 

 

 

 

 

 

 

 

All in all, Bayes network helps us to handle the dependencies which was not  that 

flexible to be handled in Naive Bayes. The demerits are that the graph structure needs 

to be stored. 
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