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1 Summary of Last Lecture

We were trying to obtain a probably approximately correct hypothesis of the unknown function as
well as determine the class of an unknown example depending on a new attribute. Even though the
Joint Distribution Table has all the combinations of the attributes and their corresponding class
probabilities, it will not be provided to us since the number of entries in the table is an exponential
function of the number of attributes and there is data sparsity in the natural world.
The conditional independence assumption implies that x is conditionally independent of y given z
if the probability of x given y and z is equal to the probability of x given z. The conditional inde-
pendence assumption helps us in reducing the number of probability estimations (from exponential
to linear) required in computing the probability of a new example to belong to a class, given a set
of attributes. For N attributes and C classes only O(NC) unique probabilities are needed in the
Naive Bayes algorithm. The Bayes rule without conditional independence:

P (y = yk|x1, x2....xn) =
P (y = yk)P (x1, x2....xn|y = yk)∑
j P (y = yj)P (x1, x2....xn|y = yj)

The Bayes rule with conditional independence:

P (y = yk|x1, x2....xn) =
P (y = yk)

∏n
i=1 P (xi|y = yk)∑

j P (y = yj)
∏n

i=1 P (xi|y = yj)

For training the Naive Bayes classi�er, the prior probabilities of all classes as well as the conditional
probabilities of all the attributes given their classes have to be computed. In order to classify a
new example x, the following classi�cation rule may be used:

ynew = argmaxykP (y = yk)

n∏
i=1

P (xnewi |y = yk)

where
xnew =< xnew1 , xnew2 , ..., xnewn >

The Naive Bayes Classi�er can used in many real life scenarious like spam mail classi�cation and
news categorization.

2 Spam �ltering

Let us consider an e-mail to have a maximum of 1000 English words. Then we have 1000 attributes.
On a regular basis, we use a maximum vocabulary of 50000 English words. So the attribute space
is 50000 words. In the Naive Bayes Spam classi�er, we make an assumption that all words have
independent and identical probability distribution in the Sample Space of all e-mails.
During training of the classi�er, we have to estimate the conditional probabilities of all words in
the vocabulary given either of the classes "Spam" or "Not Spam". We also need to compute the
prior probability of any of the classes "Spam" or "Not Spam". The prior probability of one class
is 1 minus the prior probability of the other class. The Naive Bayes algorithm follows the principle
of Maximum Likelihood Estimations to estimate the above probabilities.
Then when a new mail arrives, we need to use the conditional probability of all the words in
the new mail with respect to both the classes "Spam" and "Not Spam" which have already been
estimated during the training phase. Next we can use the classi�cation rule to compute the
posterior probabilities of the two classes "Spam" and "Not Spam" given the new e-mail.

P (y = Spam|mailnew) = P (y = Spam)

n∏
i=1

P (mailnewi |y = Spam)

P (y = NotSpam|mailnew) = P (y = NotSpam)

n∏
i=1

P (mailnewi |y = NotSpam)
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where
mailnew =< mailnew1 ,mailnew2 , ...,mailnewn >

and n is the number of words in the newly arrived e-mail.
If P(y=Spam|mail(new))>P(y=NotSpam|mail(new)), then the new email is classi�ed as a spam
mail otherwise it is classi�ed as a non spam mail.

Figure 1: Email Spam example

3 Issues in Naive Bayes

The following sections explain the di�erent issues present in the Naive Bayes algorithm:

i) Dependence on conditional independence:
In the spam mail classi�er example, we assume that all words are conditionally independent
given the class, but this may not be true for all words. For example, the word "am" can only
be preceded by the word "I" and not by "You" or any other word. Therefore tha attributes
"I" and "am" are not conditionally independent, given either class. When two attributes are
dependent, they dampen the overall estimations and can lead us to some sort of mis-estimation.
In other words, the more the presence of conditional dependence among word "attributes",
the greater the chances of error in classi�cation. Despite this shortcoming, spam �lters work
reasonably good with some tolerance for error.

ii) Posterior probability becomes zero because of a single attribute:
During training the Naive Bayes Classi�er, some attribute (say Ai) may be missing from the
training dataset examples corresponding to a given class (say Ck) and have conditional prob-
ability as zero for that class. If Ai appears in the test dataset, then the posterior probability
of Ck becomes zero as the Naive Bayes rule uses the product of the attributes' conditional
probabilities to compute the class posterior probabilities. Because of this, the other classes
will always be selected for all test examples containing Ai even though the other attributes
might point to Ck.

3.1 Formal treatment of MLE and MAP in the context of Naive

Bayes

Maximum Likelihood Estimate (MLE) where D is the probability distribution of the training
dataset and |D | is the number of examples in the training dataset:

π̂k = P̂ (y = yk) =
#D{y = yk}

|D|

θijk = P̂ (xi = xij |y = yk) =
#D{xi = xij ∧ y = yk}

#D{y = yk}
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Maximum a Posteriori (MAP) estimate given the prior (assumption) that the distribution is
Dirichlet:

π̂k = P̂ (y = yk) =
#D{y = yk}+ (βk − 1)

|D|+
∑

m(βm − 1)

θijk = P̂ (xi = xij |y = yk) =
#D{xi = xij ∧ y = yk}+ (βk − 1)

#D{y = yk}+
∑

m(βm − 1)

MAP estimates can counter the cases when any attribute is absent in the set of training
examples for a given class.
Using the above equations, any new example in the test set can be classi�ed as follows:

ynew = argmaxyk π̂kπ
n
i=1

ˆθijk

iii) can only deal with problems in which both attributes and classes are discrete:
For example in image processing, we can have an image where the intensity of the pix-
els(attributes) may be real valued instead of integer valued. This can often occur when images
from one colour scheme like Blue,Green,Red (BGR) is converted to another colour scheme like
Hue,Saturation,Intensity (HSI). The issue is that we have used Naive Bayes until now only
with respect to data that has both discrete attributes and discrete classes.

3.2 use of Gaussian Distribution for datasets having continuous at-

tributes

Gaussian Naive Bayes is another formulation of the Naive Bayes algorithm where the attributes
follow the gaussian distribution.
The probability density function for a variable x that follows the gaussian distribution is:

p(x) =
1√
2πσ2

e−1/2( x−µσ )2 ;µ : mean;σ : standard deviation

The Gaussain Naive Bayes conditional probability of attribute x(i) given class y(k) is as follows:

P (xi = x|y = yk) =
1√
2πσ2

ik

e
−1/2(

x−µik
σik

)2

µik : conditional mean;σik : conditional standard deviation

Here only the conditional means and the conditional standard deviations need to be learned
during training instead of learning the probabilities as in the case of discrete attributes. In
Gaussian Naive Bayes, sometimes for simplicity we assume that the conditional standard
deviation is either equal to the standard deviation of the attribute i for all i or equal to the
standard deviation of class k for all k. In order to classify the test examples, we use the
classi�cation rule:

ynew = argmaxykP (y = yk)π
n
i=1N(xnewi , σik, µik)

The Gaussian Naive Bayes has been used in detecting brain tumour from MRI scan images.

4 Decision Surfaces of di�erent classi�cation algorithms

4.1 Decision Tree Classi�er

The Hyper-surface formed by plotting the decision boundaries of a decision tree are sharp and
parallel to the axes, where each axis represents an attribute. The partitions formed from the
decision surface do not form a one to one mapping with the classes. One class may have multiple
partitions at di�erent continuous locations.

4.2 Candidate Elimination algorithm

Since the candidate elimination algorithm does not allow disjunction which is allowed in decision
trees, the hyper-surface formed by plotting the decision boundaries in candidiate elimination creates
partitions such that the partitions are continuous and form a one to one mapping with the classes,
while still being parllel to the axes.
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4.3 Naive Bayes Classi�er

Given a binary classi�cation problem, the Naive Bayes classi�er tries to check the greater of the
posterior probabilities of the two classes given the attributes belonging to an example in the test
set. Therefore,

P (y = 1|x1...xn) ≶ P (y = 0|x1...xn)

=>
P (y = 1|x1...xn)
P (y = 0|x1...xn)

≶ 1

=>
P (y = 1)πn

i=1P (xi|y = 1)

P (y = 0)πn
i=1P (xi|y = 0)

≶ 1

Applying logarithm on both sides of the inequality,

ln[
P (y = 1)

P (y = 0)
] +

n∑
i=1

ln[
P (xi|y = 1)

P (xi|y = 0)
] ≶ 0

Prove the following statement: If x(i) = 0,1, then the threshold (><0) is a linear
function of x(i)'s.
Hints:

i) The �rst term in the log scale inequality is a constant.

ii)P (xi = 0|y = 1) = 1− P (xi = 1|y = 1)

Because of the above statement, the Naive Bayes Classi�er is also called the log linear classi�er
since the examples plotted in the log scale make the hypothesis space a hyperplane.

4.4 Gaussian Naive Bayes Classi�er

An example of a problem which can be solved using the Gaussian Naive Bayes Classi�er: P(Student
is good in sports | Height, Marks in ML Exam). The attributes (Height and Marks in ML Exam)
are real valued. The conditional probabilities of all the attributes with respect to the classes
(good in sports and bad in sports) follow the gaussian probabilty distribution. The probability
distribution surface is a 3D surface but it can be visualized in 2 dimensions using contours.
We can plot the gaussian distributions of the conditional probabilities of the students' ML marks
along the y axis given the two classes. Similarly, we can plot the gaussian distributions of the
conditional probabilites of the students' height along the x axis given the two classes. Then we
can join the peaks of the gaussians using the third dimension or via contours, thereby obtaining
the products of the conditional probabilities. It has been seen that the line of intersection of the
hills forming the contours is straight if the hills have the same standard deviation, thus forming a
linear decision boundary. The line of intersection of the hills forming the contours is curved if the
hills have di�erent standard deviations, thus making the decision boundary nonlinear.
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Figure 2: Gaussian Naive Bayes Classi�er visualization

Prepared by: Dibya Kanti Haldar (20CD92R01)
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