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1 Summary of Last Class

We have started with the probability overview but the two important things
in probability we need to know is:

1. Conditional probability: It says about how we define the P pA|Bq

in mathematical formulation of P pA^Bq
P pBq

and chain rule accordingly.

2. Bayes’ rule: It says about where we could define the conditional prob-
ability in a flipped way to know P pA|Bq, based on our knowledge of
prior probability and that of marginal probability. This is very import-
ant to know for learning.

All these probability notions sum up into a table, known as Joint Probab-
ility Distribution (JDT). If we have the knowledge of the full set of distribu-
tion and their probability in the JDT, then we can know arbitrarily anything
about the probabilistic nature of any event and their composition, by sum-
ming up the rows in case of conditional probability just by taking a ratio of
the summed over rows. This is what we need in the probability counterpart.

Then we revisited our learning problem which tries to hypothesize an un-
known function. It knows only that training set of examples, set of attributes
leading to a classification value of Y. It can view only that and can find out
the unknown function. We have seen that for concept learning and decision
tree learning however, we change our premise a little bit by saying that -
why not we also try to find out what is the P pY |Xq . Let us say that it is
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Figure 1: Slide Reference - from 00:11 to 04:05

a classification problem and what is the probability for Y being positive and
what is the probability of Y being negative discrete values of Y, classes given
the attributes. So we call such kind of a learning as Bayesian learning where
we try to use the Bayes’ rule or kind of conditional probability, by seeing
that - given a new set of attributes, which class is more probable. Then we
will classify to that class.

Joint Probability Distribution is very good, however to our utter surprise
we see that but we cant use it in practice for data sparsity. So we have to
think about smart probability estimation. For example, one of the smart
probability estimation that we derive from our common knowledge of coin
flipping is that, if we have a large set of data in our hand then we will try to
see that, how can we make my estimation more accurate towards the data.
So for that, we need to choose our estimated probability in such a way that
it maximises the probability of that choice given, data that is given based on
the choice that I make.
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And in coin flipping example we have seen that our common sense of ba-
sic intuition matches with what we want to make as a likelihood estimation.

We also had a note in the last class that - we made another type of es-
timation where our data is not that much strong or there is less amount
of data in our hand, so we cannot try to estimate as we do in Maximum
likelihood i.e. estimation will not follow the data because data may carry
now misinformation due to a very less amount of availability. So for that we
started to think about maximum aposterior analysis.

2 Today’s Class

2.1 Slide Reference 2 given in Figure 2

Figure 2: Slide Reference - from 04:05 to 15:39

So, as we know that in maximum posteriori analysis, what we want
to do? We want to choose a θ that maximizes P pθ|dataq. Which means
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that, in mathematical sense, my MAP estimate that will come up, will be
arg maxθrP pθ|dataqs. What we will want to happen is :

MAP : Choose θ that maximizes P pθ|dataq

θ̂MAP “ arg maxθrP pθ|dataqs ùñ arg maxθr
P pdata|θqP pθq

P pdataq
s (1)

Now you can see that this factor pP pdata|θqq is our likelihood. By saying
this, I meant about how we interpret this one? P pθq is our prior knowledge
and so I know that - since I was trying to estimate - that’s why some prior
knowledge about the distribution of θ will be needed to be known which we
called as a prior and we call P pdataq probability term as a marginal. However
to get an argmax of that, we can easily understand that numerator is only
dependent on θ, and denominator is not. So, our only concern will be to
get maximum out of the numerator part. Now, since I have less amount of
data so this prior plays a very pivotal role here. We need to know some
information about the prior knowledge of our estimation. So if we take the
example of coin flipping, we had an algorithm to find this and we say that
the estimate that we give about heads and tails is nothing but as follows:

θ̂ “
pα1 `#preHq

pα1 `#preHq ` pα0 `#preT q
(2)

where preH = some number of precomputed heads and preT = some number
of precomputed tails (as given in Fig. 2).

This is done because this acts as a prior to us, because this preH over pre-
computed heads plus preT over precomputed tails are the prior knowledge
about coin biases because if we donot have any data, that means our α1 flips
of head is equal to 0 and also α0 flips of tails is equal to 0. Then our prior
knowledge dominates, whatever be our estimate. Now gradually if we have
more and more data - let us say α1 = 1000 and α0 = 1000 or 1 lakh kind
of data, then our alpha component dominates and our prior cancels out. So
that’s why this is an online learning algorithm, since by intuition we sort
out that we will go on flipping and try to estimate using this rule. Now
exactly this will come if we can leverage our prior to unsuitable manner by
maximising this as per our equation. So let us assume that our, as u know
already from the maximum likelihood that we have this as :

P pdata|θq “ θα1p1´ θqα0 (3)
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Let us assume the prior as a beta distribution. It says that suppose
my prior knowledge follows a distribution of coin flipping which is a beta
distribution. This is of the form like this:

P pθq “
θβH´1p1´ θqβT´1

BpβH , βT q
(4)

This is a Binomial distribution, but we call it a beta distribution of θ
given this Beta(θ, βH , βT ). Since we dont know the exact bias, so we assume
such distribution:

P pθq “
θβH´1p1´ θqβT´1

BpβH , βT q
„ Betapθ, βH , βT q (5)

If we know that our prior coin flipping falls into such kind of a distribution,
which is my maximum likelihood thing, then again we are trying to maximise
product of P(data|θ) and P(θ) into partial derivative, because I need to
maximize the numerical term only. So I am trying to maximize :

B lnrθαH`βH´1p1´ θqαT`βT´1s

Bθ
“ 0 (6)

So previously we considered αH as α1 and αT as α2, so :

θ̂MAP “
αH ` βH ´ 1

pαH ` βH ´ 1q ` pαT ` βH ´ 1q
(7)

Now what does this signify? See it signifies the exact intuition that we
have in our coin flipping example. The square box bracketed is our halucin-
ated pre thought about the distribution prior:

θ̂MAP “
αH ` rβH ´ 1s

pαH ` rβH ´ 1sq ` pαT ` rβH ´ 1sq
(8)

So therefore we can easily understand that if we donot have much data or
say if we have ample number of data, our online algorithm in both the cases
(in MLE and MAP estimates) is a good estimate. This MAP estimate is a
good estimate because if we have more data we can follow this one, where
this one will dominate our prior knowledge and automatically data will be
more likely. If we have less data then our prior knowledge has to dominate
because unless we have something we donot learn, u donot estimate anything.
So that’s why if we take beta distribution we can see that our common sense
falling up and why beta distribution? There is something in statistics which
we call conjugate prior, where our final answer is of the same structural type
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as our prior, then we call it as a conjugate prior. We see this likelihood and
prior is of same type (that is Eqn. 3 and Eqn. 4 respectively).

Also when we multiply it and try to find our final P(θ|data), it is of same
type because it is coming of the same style of expression. So, in common
sense, we call it as a conjugate prior in statistics and usually when people
try to estimate such kind of a thing, we will try to find out some prior
which resembles my likelihood data. That is why we took this kind of a beta
distribution in two part classification , i.e. heads or tails.

2.2 Slide Reference 3 given in Figure 3

Figure 3: Slide Reference - from 15:39 to 25:20

And if we try to look around in a more generic sense, we will use θ1
α1 , θ2

α2 ,
and so on. . . , θk

αk (if instead of a coin flip, we use a six sided die, there will
be multiple outcomes instead of a head or tail)

P pdata|θq “ θ1
α1 , θ2

α2 , ..., θk
αk (9)
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řk
j“1 θj “ 1

If we try to generalize this in terms of k classifiers, we take the prior as a
Dirichlet prior. We can easily understand about what we do is we get it as
a Dirichlet distribution of theta with β1 upto βk .

P pdata|θq “
θ1
β1´1, θ2

β2´1, ..., θk
βk´1

Dpβ1, ..., βkq
„ Dirichletpθ, β1, ..., βkq (10)

Then also if we try to make the map estimate, and prior knowledge, we
will get the same thing (θ̂iMAP (lets say in a dice the ith number occurs) ):

θ̂iMAP “
αi ` pβi ´ 1q

řk
j“1 αj ` pβj ´ 1q

(11)

Just like the two flipping case, we just declare here like this way (the
above estimation is for multi-valued attribute). It is nothing much to think
on this because it is just a different distribution since we now have different
classification classes rather than only 2. So the main point is that JDT has
the demerit of data sparsity and as the name ’data sparsity’ says - we can un-
derstand that it means we have less amount of data for all possible columns.
Now if we have sufficient represented data then we go for MLE, may not be all
data as - in JDT we have all 2n entries but there are sufficient representation.
Where we have less amount of data but we have a prior knowledge, we go
for MAP estimate which says Maximum Aposterirori. The name comes from
the fact that we have a prior knowledge and we are predicting a posterior
knowledge based on the Bayes’ rule. That’s what the smart estimation thing
means. We have to be either smarter in estimating from less amount of data
with a prior knowledge or have to be smarter from estimating whatever data
we r given, even if knowledge is full. So, these are some of the ingredients
that we need to know for our learning algorithm because I can now again
post the same question of learning.

2.3 Slide Reference 4 given in Figure 4

Now, We have a JDT and all that we know is conditional probability, so now
coming back to our learning question - let us say we are classifying with the
set of n attributes P pY |x1 x2 x3 . . . xnq , so this is what we want to answer
now. So as we can see that if u have a JDT, it is pretty bad because we
need to have 2n rows if there are n attributes. For example, in this case what
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Figure 4: Slide Reference - from 25:20 to 34:32

we are trying to learn is that for probability of wealth given the gender and
given the hours of working i.e. P pW |G,HW q, this is what we are trying to
learn. So if we have the full distribution table , we need to estimate 2n ´ 1
no. of cases because one case we can eliminate, i.e. the whole sum. So why
n? n Because I have n no. of attributes. Say there is n+1 no. of space, so in
the total distribution table it is 2n`1-1 (as given in Fig. 5) or 28 estimation
needing due to these 3 values.

By this way, let us say we compute P prich|genderandhoursworkq. So we
only need to square number of estimations to make. This is nothing but a

Table 1: 22 datapoints
Gender Hours Worked P prich|G,HW q P ppoor|G,HW q

F <40.5 0.09 0.91
F >40.5 0.21 0.79
M <40.5 0.23 0.77
M >40.5 0.38 0.62
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Figure 5: 2n`1-1 no. of cases

conjugate of this because :

P prich|G,HW q + P ppoor|G,HW q = 1 (From Table 1)

As I am considering two classes – rich and poor. So P ppoor|gender, hoursq “
1´ P prich|gender, hoursq.

So this is redundant. So for each of the combination or values since gender
takes 2 values and hour work is thresholded by 40.5, it can take 2 values, so
we are getting this many number of computation (Fig 5).

So therefore if there are n attributes so the number of estimates that we
require is 2n which we can easily see just by computing it. By estimate, we
are not confining to only MLE or MAP, any kind of estimate. If we want
to make it from n attributes, u need to compute these many :– atleast 2n
number of entries to find out the classified value . Say , JDT is not visible
for us, estimation is needed for us, so for that MLE and MAP is needed. But
my question is if we need to determine the value classified and probability
value say P pY “ 0|X1 X2 . . . Xnq, we need 2n estimates to confirm because
each estimate will give such kind of an answer so that should be 2n estimates.

So if we get a new attribute of a problem, if we know these 2n estimates,
then I can classify it whether it is Y=0 or Y=1, which probability is more.
Now moving towards the learning problem, what we need to know is to clas-
sify P pY “ 0| given a new set of attributes). So this is our learning problem.
To know this, what we need to know is 2n estimates. For many large set of
attributes we may not have all informations but our MLE or MAP estimates
can give us these values. Now how many estimates do we need to judge any
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new attribute falling into Y=0 or 1 category? We need to know 2n estimates.
Thus if Bayes’ rule learned can help, let us see if our Y (say Y=0 or 1 or
anything more than 2 class) is given by my bayes’ rule:

P pY |X1 X2 . . . Xnq “
P pX1 X2 . . . Xn|Y qP pY q

P pX1 X2 . . . Xnq
(12)

If we want to find out the class of Y given these attributes, how many estim-
ations to make here if instead of this formula we have used bayes’ rule . This
formula didn’t help because we need to have all the estimates for this viz.
P pX1X2 . . . Xn|Y “ 0q and all the estimates for this P pX1X2 . . . Xn|Y “ 1q
because these two donot sum up to 1. Also we need to have estimates of P(Y)
and P pX1 X2 . . . Xnq. And therefore for this, we need 2n ´ 1 estimates for
P pX1X2 . . . Xn|Y “ 0q and P pX1X2 . . . Xn|Y “ 1q , even if we precompute
P(Y) or P pX1 X2 . . . Xnq. Let us say one estimate for this, so effectively we
are needing 2p2n ´ 1q ` 1, even if thinking that, this is precomputed(all the
compositions). So it is even worse than this form :

P pY “ 0|X1 X2 . . . Xnq

#Estimations = 2n

So directly applying baye’s rule doesn’t help. Firstly, Problem is that we
donot have joint distribution. we have a subset of the data, i.e. a very low
subset of the data, as we can see if we have 100 attributes and most of the
columns in the JDT are unknown so for that we can use MLE estimate or
MAP estimate depending on the data and prior knowledge availability, but
we can come up with these classes P pY “ 1|X1X2 . . . Xnq for the given data.
We can come up with these values for a given data. So if we need to compute
all such, then directly we are computing it in 2n steps. If we use bayes’ rule,
then it doesn’t help because it is doing worse.

Now for a new thing to classify Xnew, we will just try to ensure what is the
P pY “ 1|Xnewq or P pY “ 0|Xnewq and we classify it according to whichever
is the highest based on my goal. Now to classify something new, I will say
this is my training phase. So my training phase needs 2n estimates atleast in
the way we are doing. So 2n estimates is huge, because for 100, it’s a huge
and we usually do with 50K, 1 lakh, even 1 crore features. So we can see that
if each estimate takes a fraction of second even, then also all these estimates
computation to find out the classification boundary is impossible. What can
we do about this, is the next question.
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2.4 Slide Reference 5 given in Figure 6

Figure 6: Slide Reference - from 34:32 to 44:20

So the question lies in our want to classify by having training with this
data P pY “ 1|X1 . . . Xnq, where we want to classify a new thing. What
can we do or how can we train it instead of training the 2n estimates or
calculating 2n estimates during training phase.

In statistics , there is a concept called conditional independence. We say
that is a random variable, is conditionally independent of y given z, if I can
write this thing that P pX|Y Zq “ P pX|Zq . So this is a definition of condi-
tional independence in statistics, that I say X is conditionally independent
with Y given , if this thing happens:

X is Conditionally Independent of Y | Z if

P pX|Y Zq “ P pX|Zq (13)

For Example: We know that when you see a lightning, a thunder will come
so raining doesn’t have any conditional dependence with the thunder com-
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ing if there is a lightning. So therefore P pthunder|Rain ^ Lightningq “
P pThunder|Lightningq because whenever lightning happens, thunder will
automatically come. Whether it is raining or not, it doesn’t matter when we
see a lightning happen. This can be mathematically considered as:

P pT |R ^ Lq “ P pT |Lq (14)

This is very interesting given this thing, otherwise it may not be condition-
ally independent. So with this definition, what does it help, let’s try to see
mathematically. We are trying to invoke this training P pY “ 1|X1 . . . Xnq

by using bayesian rule.

Now, what does this term say if we can make an assumption about the
conditional independence of each of my attribute. So if we can choose my
attributes during our classification problem in a conditionally independent
way, how does it help.

Assume P pX1 ... Xn|Y q. So let’s try to see for 2 attributes. so what does
P pX1X2|Y q mean. Apply chain rule :

P pX1X2|Y q “ P pX1|X2Y qP pX2|Y qP pY q (15)

We assume that our attributes in the first term of RHS (i.e. X1 and X2 )
are conditionally independent, so:

P pX1X2|Y q “ P pX1|Y qP pX2|Y qP pY q (16)

So therefore in general, we can write it as (if X1, X2, X3. . . all are condi-
tionally independent) :

P pX1 ... Xn|Y q “
n

ź

i“1

P pXi|Y q (17)

But in terms of learning, what does these assumptions bring? When we as-
sume something in our learning framework, we only generalize our learning.
May be some bad examples also come in, may be some good examples also
come in. We donot know whether these assumptions, of making conditional
independence, will affect our learning or will help our learning or not. So
now our only goal is that whichever learning problem we are given to solve ,
we try to figure out its attributes so that it becomes conditionally independ-
ent with each other. Then it is a very good problem for bayesian example
because now our estimation of P pY | ă X1. . . Xn ąq boils down to the fact
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that I have :

P pY | ă X1 X2 . . . Xn ąq “
P pă X1 X2 . . . Xn ą |Y qP pY q

P pX1 X2 . . . Xnq
(18)

Which is basically applying the conditional independence, it becomes:

P pă X1 X2 . . . Xn ą |Y qP pY q

P pX1 X2 . . . Xnq
ùñ

śn
i“1 P pXi|Y qP pY q

P pX1 X2 . . . Xnq
(19)

Because the term P pă X1 . . . Xn ą |Y q by the conditional independence
assumption has reduced to this term :

śn
i“1P pXi|Y q

Now how many probability estimates we need? For this Eqn. 19, n probab-
ility values for Y=0 and n probability values for Y=1. So we can see that
2n and 2 (for P(Y) for Y=0 and Y=1) i.e. 2n+2 number of estimates during
training to figure out anything after we train and then try to classify. We
are not counting the probability value of P pX1 . . . Xnq considering it to be
given previously.

So we have a meaningful computational algorithm to estimate or to train
a bayes’ classifier. Now our training is that, given the partial set of JDT, we
use MLE estimates. For eg., let us only concentrate on MLE. Suppose let
us think that we are given a table with sufficient amount of data and may
not be the full exponential set of data, thus we train it and build a classi-
fier. Given a new example, we try to see what that classifier results. If our
P pY “ 1q ą 0.5, then classify it as +ve, if our P pY “ 1q ă 0.5 then classify
it as –ve.

2.5 Slide Reference 6 given in Figure 7

We call it Näıve Bayes’ Algorithm. Though it’s an assumption of the condi-
tional independence of selection of attributes, it works like magic in our spam
filtering, in our News Article Separation, in our Text classification. Though
in spam filtering what we do? Suppose we get such kind of message given in
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Figure 7: Slide Reference - from 44:20 to 01:00:59

Figure. 8. See this is spam, if you look into a spam, we can easily see that
there is something like the selected words in this Figure. 8.

Hence this kind of a thing is a spam. So what are our attributes here? Our
attributes here are number of these words occurring here. So the words that
are occurring here will act as attributes to us and in English it has been seen
that there are 50K words that we colloquially use to communicate. So at max
there will be 50K attributes traditionally. In general english communication,
we don’t use greater than 50K words. But since now 50K attributes, so if we
go by our generic principle we get 250K number of prior probability estimates
u require. Whereas here, 2 x 50K number of estimates u require. And so,
what we are trying to do in the näıve bayes’ classification is :
Let us say if for eg. this mail is spam or not spam is binary classification, but
news separation is not a binary classification, because it could be a sports
news, financial news, political news etc. So therefore I say that there are n
number of classes that we want to classify and given that there are k classes
(given the value of class is yk) and we try to make it like this way that - given
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Figure 8: Spam mail

the attributes we choose, we write it using bayes’ rule with the conditional
independence assumption :

P pY “ yk|X1 X2 . . . Xnq “
P pY “ ykq

śn
i“1 P pXi|Y “ ykq

ř

j P pY “ yjq
śn

i“1 P pXi|Y “ ykq
(20)

Denominator is expanded just like earlier we did, when we got P(B) in the
denominator which can be expanded as :

P pBq “ P pB ^ Āq ` P pB ^ Aq

“ P pB|ĀqP pĀq ` P pB|AqP pAq
(21)

So for each of the values, we just expanded the summation. So here our
näıve bayes classifier will just take on each of the training examples. So
suppose we have values of attributes:

X1={good(G), bore, bad}
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Table 2: Training Examples

X1 X2 X3 Y

G R B -
G O B -

Bore R W +
Bad O B +
G R W +

X2={study regularly(R), study occasionally(O)}
X3={perform well in exam(W), perform bad in exam(B)}

Y={I remember ML after this course is over(+), otherwise(-)}

With this attribute set , we are given suppose this set of data given in Table
2 .

So these are the data given to u. This is not a full data available. Suppose
only this much is my set of training examples, so what we need to do? MLE
estimates is needed because Bayes’ Algorithm based on MLE estimates. So
you need to first find out probabilities P(Y=+) and P(Y=-) . From this
above given training dataset:

P(Y=+) = 3
5

where P(Y=+) = α1

α1`α2

And P(Y=-) = 2
5

Then we will try to estimate what if X1 is good, given that Y is +, which
is P pG|`q and P pG|´q, P pBore|`q, etc. How do you compute P pG|`q only
from the table? So we see which entries are good with + along all the plus
entries because it’s a conditinal probability so it will be 1

3rd
among three +

Y’s, only the X1 of last column is good. So P pG|`q “ 1
3
. So in this way

we compute all of them assuming whether the subject is good, whether I
read it or not, whether I remember. Usually we are assuming these three as
conditionally independent (X1, X2 and X3) variables. So when we get all
these informations, that is our training.

Now what will happen, suppose we get out of the box one example, say:
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X1 = Bo

X2 = O
X3 = W
Y = ?

This is my Xnew say, how will we classify them to get our Y. For this
example, we will again try to resort to this kind of probability estimates and
taking the values from here we can determine the value of Y.

Suppose this is a new attribute given to us, where we say that the 3
attributes are [ Bo(Bored) , O(Occasionally Study) , W(i.e. still remember
well)], then we want to see what will be our class Y, i.e. :

P pY “ `|Bo`O`W q “
P pY “ `qP pBo|Y “ `qP pO|Y “ `qP pW |Y “ `q

ř

j P pY “ `q
ś3

j“1 P pXi|Y “ `q

(22)

(Using Bayes’ Rule) If value ą“ 0.5, then classify this as +, else –

So, Concise Description:

1. We will use MLE for estimation during training. We have data and
we will estimate every possible parameters through MLE in the data,
P(Y=+) i.e. how many ’+’ out of how many data we have, P pXi “

G|Y “ `q , etc. These many set says me that, Y=+ in that given set
G is only one so Probability=1

3
.

2. In this way, we will estimate everything - single attribute given Y=+
and given Y= - . That’s my training done.

3. After getting a new attribute, we need to classify now with that train-
ing data where we have these all informations of miniscule probability
values. We just take that computation once again with this new attrib-
ute and if the computation results of P(Y=+) is higher than P(Y=-) ,
we will classify this as positive otherwise negative.

So to summarize - with the MLE and MAP estimates, now our job is to
learn. So when we started our learning, we said that if JDT is not available
to us, we need to use the estimates that we just learned (MLE or MAP) 2n

number of times to have a meaningful answer to our classification solution.
However we have seen that bayes’ rule directly is not well enough because it
makes us more. So the earlier one is good, but it is not good because 2n is
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exponential so we thought about something called conditional independence
formula. And if we can select attributes which are conditionally independent
then estimates come done to 2n. Estimates are these granular values -

śn
i“1 P pXi|Y q

Now näıve bayes just exploits those. Let us say we are using MLE , just
from these we are trying to say what is the P pX2 “ R|Y “ ´q , what is
P pX2 “ R|Y “ `q, all these things it concludes. Then what will happen in
such a case if it computes this way? Then my training is just estimations,
that’s my training. For new classification, we will again follow this condi-
tionally independent bayes’ improvisation and try to see what my class is,
whichever class probability is higher, that will be my class and that is all
Be-All and End-All of näıve bayes’. Why these algorithms are popular in
Machine learning? Because there is nothing deterministic solution we can
give so the conditional independence is an assumption over the environment
and the more we bring in assumptions in our algorithm, the more generalize
we do or may be more specialised thing u do. But in case of problems viz
spam filtering, our gmail automatically sends them into spam folder. How
does they do it? Because they have certain kinds of words which are attrib-
utes, its occurrences are the probability and based on that it uses just näıve
bayes’ . Same thing happens when now-a-days we see that when in gmail
we type and send something, if there is no attachment but we have written
something like attached or attachment, then we will be notified that we have
not attached anything. How does it do that? It watches a millions of mails,
computes this MLE kind of estimates, the training and then gives a go at it
with a conditional dependence assumption.
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