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Till last class what we have learned is that there is an unknown function f:X->Y and a set of training 

examples <xi,yi>, then learning goal is to predict a function g from hypothesis set which approximates f 

(g≈f). For that we have learned concept learning, decision tree learning algorithms (to incorporate the 

disjunctive property of the attributes).  

For classification problem, the function could be represented as f:X->Y{1,0}. This problem could also be 

defined as Prob(y=1) given x which is represented as P(y=1|<x>) and Prob(y=0) given x which is 

represented as P(y=0|<x>. In next few classes we are going to learn how a classification probability 

could be estimated for an unknown set of attributes if a set of attributes with their classification 

probabilities are given as training examples. 

Note, if Prob(y=1|<x>) = p then off course Prob(y=0|<x>) = 1-p .  

Probability Basics: 
An event or a random variable is outcome of a random experiment. 
For example say we draw a random student from this class. What is the probability that the student is a 
female student? Here the event is [A-> female student], A is the random variable. 

Prob(A=f) = 
    

   
 . Sf is the number of female students in the class and S is the total number of students in 

the class. 
 
Venn diagram representation of the same is as below. 
 
 
 

 

 

Axioms: 
1. P(A) + P( ̅) = 1 
2. 0≤P(A) ≤1 

                   𝐴̅ A A B 



3. P(AՍB) = P(A) + P(B) –P(AՈB) 
4. P(A) = P(AՈB) + P(AՈ ̅) 

 

 
Figure 1 (Handout-04a): Probability Basics and Learning in Probabilistic Way. 

 
Conditional Probability: 
What is the probability of A given the probability of B. The same is written as P(A|B). 
 
Mathematically, 

P(A|B) = 
      

    
 

=>P(AՈB) = P(A|B)P(B) = P(B|A)P(A)         {Premise of Bayes Rule} 
 

Hence Bayes Rule is P(A|B) = 
          

    
 

 
Chain rule: 
P(AՈBՈC) = P(A|BՈC)P(BՈC)  = P(A|BC)P(B|C)P(C) 
 
Chain rule generalization: 
P(A1A2……An) = P(A1|A2A3…An)P(A2|A3A4…..An)……P(An-1|An)P(An) 
 
So generalized Bayes theory - 

1. P(A|B) = 
          

                       
 

 
 



2. P(A|BՈX) = 
              

      
 

 
Remember, 
P(A=1|B) = 1-P(A=0|B)   
but  
P(A|B=1) ≠ 1-P(A|B=0) 
 

 
Figure 2 (Handout-04a): Conditional Probability and Bayes Rule 

Learning with Joint Distribution: 
 
Suppose following probability distribution is given. 
 

A B C Probability 

0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 



Here A, B, C are binary attributes. In this table probabilities for all possible attribute values have been 
given though some rows may not be available in reality. 
Let’s draw a Venn diagram from the table data. 
 
 
 

 

 

 

 

 

 

  

Some of all the probabilities is 1.  
P(A=1) = ∑                              = 0.05 + 0.10 + 0.25 + 0.10 = 0.50 
 
Similarly, 
P(AՈ ̅   Sum of all the rows where A = 1 and B = 0 
               = 0.05 + 0.10 = 0.15 
So basically if full JDT is given, anything could be estimated.  
 
But there is one challenge. For n attributes, we need to have 2n-1 probabilities or 2n-1 training examples 
beforehand. 
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Figure 3 (Handout-04a): Joint Distribution and Its Challenge 

 
Let’s take another practical example. 
 

gender Hrs_worked wealth probability 

F V0:40.5- poor 0.253122 

  rich 0.0245895 

 V1:40.5+ poor 0.0421768 

  rich 0.0116293 

M V0:40.5- poor 0.331313 

  rich 0.0971295 

 V0:40.5+ poor 0.134106 

  rich 0.105933 

 
 
The problem could be defined as approximating function f:<HW,G> -> W {poor, rich} from the given data 
set. Same problem could also be defined as Prob(w=rich|<HW,G>). 
 
Prob(w=poor) = ∑               

Prob(male|poor) = 
                   

          
 =

                 

                                    
 = 0.465/0.65 

Similarly, Prob(rich|HW,G) = 
                       

              
 

 
If HW = <40.5- and G = female then 



Prob(rich|HW,G) = 
                               

                       
 = 

         

                   
 

 
 
So if JDT is given then we can calculate all other conditional probabilities.  
 
Are we done? 
 
If Joint Probability Distribution Table is available then we are indeed done. But for n attributes we need 
(2n-1) estimations. So if there are 100 attributes in a problem, we need 2100  ≈ 1030 estimations. 
World has a population of 109 or 1010. Assume prediction of tuberculosis requires 100 symptoms. To 
predict whether someone has tuberculosis we need 1030 data but we have only 1010 population. So there 
will be much less data than what we require. This lack of data is called data sparsity. 
In this tuberculosis case there will 0.9999 null entries in JPDT. 
 
When we are calculating probabilities, we are summing up some rows from JPDT.  

Prob(rich|<..100 attr..>) = 
∑         

∑         
 

If some rows are missing then what value we should consider for those missing rows, 0 or something 
else? If those are wrong then our estimation would also be wrong. We have to do something to estimate 
probability even though there are not ample data. 
 

 
Figure 4 (Handout-04a): JDT for Practical Example and Challenge 

 
What can we do? 



To handle the problem due to data sparsity and due to exponential data volume with respect to number 
of attributes, we’ll learn below two approaches. 

1> Learn smart probability estimation – something that helps to calculate nearly correct probability 
even though data missing. 
Here we’ll learn Maximum Likelihood Estimation (MLE) and Maximum A Posterieori (MAP) to 
learn smart estimation in case of data sparsity. 

2> Representation of JPDT – Even though data available, the volume of data is so high that 
searching on JPDT table could be very inefficient if JPDT table is not represented in a way to 
make the search efficient. 
Here we’ll learn Baye’s Net to represent JPDT table efficiently. 

 
 
How to estimate probability smartly (Here probability is not deterministic. This is learning): 
Let’s talk about coin flipping problem. 
 
                 X=1                    X=0 
 
 

In a random flipping if we get α1 times head and α0 times tail then  ̂ = P(X=1) = 
  

      
 

 
Suppose one day someone flips the coin 100 times and got 49 H and 51 T. Then as per the above we can 
say Prob(X=1) = 49/(49 + 51) = 0.49. 
Now another day someone flips the coin 3 times and got 2 H and 1 T. So Prob(X=1) = 2/(2+1) = 0.67. 
 
In the first case where we had 100 flips we got much fair result. There is some issue with second case 
having only 3 flips. So if training data is abundant, we are getting approximately correct estimation of 
probability but if there are less training data then estimation is not approximating correctly. 
 
So we have to find another learning algorithm that can cater to both the scenarios correctly. 
 
Here comes something called “A Priori” knowledge. 
For coin flip case, Prob(θ) should be ~0.5 for unbiased coin. 
So basically my prior knowledge is that out of 20 flips, 10 should be H and 10 should be T. 
 
So for our learning algorithm, if training data is less, we are biased to our prior knowledge and if we 
have sufficient training data, we’ll follow likelihood of the data. 
 

So we can write  ̂ = P(X=1) = 
     

                
 

 
So if I have less data, my prior knowledge will dominate and the probability would be closed to 0.5. If we 
have ample data, then prior knowledge would be almost ignored and the result will still be closed to 0.5. 
 
So if we understand up to this then intuitively,  

MAP is nothing but  ̂ map= P(X=1) = 
     

                
 

And MLE is nothing but  ̂ mle= P(X=1) = 
  

      
 

 

H T 



 
Figure 5 (Handout-04a): Learning Smart Estimation 

Mathematically, 

MLE:  ̂ mle= argmax θ(Prob(Data|θ)) 

MAP:  ̂ map= argmax θ(Prob(θ|Data)) 
 

Prob(θ|Data) = 
                   

          
 .  

So maximizing probability means, maximizing the numerator as denominator is fixed (called margine). 
Here, Prob(Data|θ ) is likelihood of the data and Prob(θ) is the priori. 
 
Let’s assume the coin flip problem again. 
P(X=1) = θ 
P(X=0) = 1- θ 
 
Say there were five consecutive flips with results 10010. So the likelihood of the data given θ is θ(1- θ)(1- 
θ) θ(1- θ) = θ2(1- θ)3. 
So in general if α1 H and α0 T, then likelihood of data with θ is θα1(1- θ)α0 

 
Now we need to maximize θ over θα1(1- θ)α0 and that gives us the MLE. 

Applying maximization rule 
 

  
[..] = 0 

 

  
[α1 ln θ + α0 ln (1- θ)] = 0 

 α1.
 

 
 + α0

 

   
 ln (1- θ). 

     

     
 = 0 

 α1.
 

 
 + α0. 

 

   
 . (-1) 

 
  

      
 



 

So we have now mathematically derived our intuitive knowledge  ̂ mle = 
  

      
 

 

 
Figure 6 (Handout-04a): Derivation of MLE 

 
In next class we’ll learn about MAP. 
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