
Lecture Scribe for Machine Learning (CS60050)

Spring 2020-2021

Instructor: Prof. Aritra Hazra

CONCEPT LEARNING (Date: 8th January,2021 and 13th January, 2021)

● Learning Diagram
So far in the previous lecture we have learnt about what is learning and is learning feasible?
In that context Learning diagram is recapitulated in this lecture.

Fig1: Learning Diagram

We need to learn a function f : X → Y , the unknown target. In our hand, we have the training
data set, i.e., {<x1, y1>, <x2, y2>, · · · <xN, yN>}. We are now trying to write our learning
algorithm, which uses these training data and tries to figure out a function, say g, which relates f
approximately , and we denote this g as the hypothesis. Specifically, we want to choose the
function g from the hypothesis set H, where H = h1, h2, . . . hM. Therefore, we may say g = hi ,
where i ∈ 1 to M.

Refer Handout-02-a slide-1

● Concept Learning

In a concept learning task, a human or machine learner is trained to classify objects by being
shown a set of example objects along with their class labels. The learner simplifies what has been
observed by condensing it in the form of an example. This simplified version of what has been
learned is then applied to future examples.
 In Concept Learning our task is to derive a Boolean function from training examples.
We can have many “hypothetical” boolean functions that form our Hypotheses set; from that we
have to figure out a certain hypothesis h such that h = c where c is our target concept that defines
the system.
Although we can have many complex examples where we have to derive non boolean functions,
for simplicity we will consider boolean function examples.

Example: Suppose we are having a scenario where based on certain attribute inputs we are
deciding some event “EnjoySport” as Yes or No.
 The attributes are Sky, AirTemp, Humid, Wind, Water, Forecast .
Suppose we are having the following 4 training examples. Now our task is to find an appropriate
set of hypotheses based on the concept we can acquire from the given training data. Based on the
hypothesis set we will gradually move to our goal of having a hypothesis say h, such that ∀ x ∈ X,
h(x) = c(x).

Now in this particular example, let's count the number of possible instances of the input
attributes.
The Sky attribute can have values within this set {Sunny, Rainy, Cloudy} So, |Sky| = 3
Similarly we are having, |Temp| = |Humid| = |Wind| = |Water| = |Forecast| = 2

Thus total possible distinct instances are: |X| = 3 * 2 * 2 * 2 * 2 *2 = 96
Now from these distinct instances EnjoySport can be either 0 or 1. So the maximum number of
hypotheses will be |H| = 296 which is highly inefficient even for a small EnjoySport example.

To tackle this scenario the idea of Inductive Learning Hypothesis is important.

Inductive Learning Hypothesis: Any hypothesis found to approximate the target
function well over a sufficiently large set of training examples will also approximate the
target function well over other unobserved examples.
So the choice of the hypothesis space can reduce the number of hypotheses. So let's see how we
should represent the hypothesis.

Representing Hypotheses:
Represent hypothesis as Conjunction of constraints of the following form:
 – Values possible in any hypothesis

Specific value : Water Warm
 Don’t-care value: Water: ? (anything permissible value)

No value allowed : Water: Φ (nothing permissible value)
 – Use a vector of such values as hypothesis:
Attributes: < Sky AirTemp Humid Wind Water Forecast >
For example : < Sunny ? ? Strong ? Same >
Based on our constraint (including ?s & Φs) and total number of possible hypothesis will be,
|H| = (3+2)(2+2)(2+2)(2+2)(2+2)(2+2)] = 5 * 4 * 4 * 4 * 4 * 4 = 5120 << 296

Further, when we consider the hypothesis with Φs
 semantically distinct h’s will be |H| = 4 * 3 * 3 * 3 * 3 + 1 = 973
Thus, with our constraint we have reduced the actual number of hypotheses much from the
inefficient number 296.

Sky AirTemp Humid Wind Water Forecast EnjoySport

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change Yes

Refer Handout-02-a slide-2

● Find-S algorithm is a basic concept learning algorithm in machine learning. Find-S algorithm

finds the most specific hypothesis that fits all the positive examples. We have to note here that the
algorithm considers only those positive training examples. Find-S algorithm starts with the most
specific hypothesis and generalizes this hypothesis each time it fails to classify an observed
positive training data. Hence, the Find-S algorithm moves from the most specific hypothesis to
the most general hypothesis.
Here we take the assumption that there is hypothesis h in H describing target function c and there
are no errors in the Training Examples (TEs).
The most general hypothesis is represented by: hG = <?, ?, ?, ?, ?, ?>
The most specific hypothesis is represented by : hS = <Φ, Φ, Φ, Φ, Φ, Φ>

Steps Involved In Find-S :

1. Start with the most specific hypothesis.hS = <Φ, Φ, Φ, Φ, Φ, Φ>
2. Take the next example and if it is negative, then no changes occur to the hypothesis.
3. If the example is positive and we find that our initial hypothesis is too specific then we

update our current hypothesis to general condition.
4. Keep repeating the above steps till all the training examples are complete.
5. After we have completed all the training examples we will have the final hypothesis

when can be used to classify the new examples.

Refer Handout-02-a slide-3

So let's start with <Φ, Φ, Φ, Φ, Φ, Φ>
 TE1 <Sunny, Warm, Normal, Strong, Warm, Same> → YES
So, h1 = <Sunny, Warm, Normal, Strong, Warm, Same>
 TE2 <Sunny, Warm, High, Strong, Warm, Same> → YES
So, h2 = <Sunny, Warm, ?, Strong, Warm, Same>
 TE3 <Cold, Warm, High, Strong, Warm, Change> → NO
Same as h2
 TE2 <Sunny, Warm, High, Strong, Cool, Change> → YES
So, h3 = <Sunny, Warm, ? , Strong, ?, ?>
Thus based on find S Algorithm the most specific Hypothesis is <Sunny,Warm,?, Strong, ?, ?>
Problems with find S Algorithm:

1. Throws away information! (Negative examples)
2. Can’t tell whether it has learned the concept (Depending on H, there might be several h’s

that fit TEs!)
3. Can’t tell when training data is inconsistent (Since ignores negative TEs)

By keeping all consistent hypotheses we can tackle these problems.
Consistent Hypotheses
A hypothesis h is consistent with a set of training examples D of target concept c if h(x) = c(x) for
each training example <x, c(x)> in D.
Notation: Consistent(h, D) ≡ ∀ <x, c(x)> ∈ D, h(x) = c(x)

● VERSION SPACE
A version space is a hierarchical representation of knowledge that enables you to keep track of all
the useful information supplied by a sequence of learning examples without remembering any of
the examples.
Version space basically represents the intermediate hypotheses between the most specific and
most general hypothesis.
The version space, VSH,D , with respect to hypothesis space H and training examples D, is the
subset of hypotheses from H consistent with D.
Notation: VSH,D = {h | h ∈ H and Consistent (h, D)}
The general boundary, G, of version space VSH,D is the set of its maximally general members
consistent with D. It Summarizes the negative examples. Anything more general will cover a
negative TE •
The specific boundary, S, of version space VSH,D is the set of its maximally specific members
consistent with D. It Summarizes the positive examples. Anything more specific will fail to cover
a positive TE.
Representing Version Spaces

● Store most/least general boundaries of space
● Generate all intermediate h’s in VS
● Idea that any h in VS must be consistent with all TE’s
● Generalize from most specific boundaries
● Specialize from most general boundaries

In the previous example we have the most specific hypothesis is <Sunny,Warm,?, Strong, ?, ?>
General hypotheses for the given examples will be <Sunny, ?, ?, ?, ?, ? >, <?, Warm, ?, ?, ?, ?>
Now gradually we will move from the general hypotheses towards the most specific hypotheses
by specialising the features so that it gets consistent with the target concept.

Fig 2: Version Space for this Example

Refer Handout-02-b Slide - 5

● Candidate Elimination Algorithm:

The candidate elimination algorithm incrementally builds the version space given a hypothesis
space H and a set E of examples. The examples are added one by one; each example possibly
shrinks the version space by removing the hypotheses that are inconsistent with the example. The
candidate elimination algorithm does this by updating the general and specific boundary for each
new example.

● We can consider this as an extended form of Find-S algorithm.
● It considers both positive and negative examples.
● Actually, positive examples are used here as the Find-S algorithm (Basically they are

generalizing from the specification).
● While the negative example is specified from generalize form.

Steps Involved:
Step1: Load Training Examples
Step2: Initialize General Hypothesis and Specific Hypothesis.
Step3: For each training example
Step4: If example is positive example
 if attribute_value == hypothesis_value:
 Do nothing
 else:
 replace attribute value with '?' (Basically generalizing it)
Step5: If example is Negative example
 Make the generalized hypothesis more specific.

Refer Handout-02-b Slide-6

Initially : G = {<?, ?, ?, ?, ?, ?>}
 S = [Φ, Φ, Φ,Φ, Φ, Φ]

For TE1 : <'sunny','warm','normal','strong','warm ','same'> and positive output.
 G1 = G
 S1 = <'sunny','warm','normal','strong','warm ','same'>

For TE2 : <'sunny','warm','high','strong','warm ','same'> and positive output.
 G2 = G
 S2 = <'sunny','warm',?,'strong','warm ','same'>

For TE3 : <'rainy','cold','high','strong','warm ','change'> and negative output.
 G3 = {<'sunny', ?, ?, ?, ?, ?>, <?, 'warm', ?, ?, ?, ?>, <?, ?, ?, ?, ?, ?>,
 <?, ?, ?, ?, ?, ?>, <?, ?, ?, ?, ?, ?>, <?, ?, ?, ?, ?, 'change'>}
 S3 = S2

For TE4 : <'sunny','warm','high','strong','cool','change'> and positive output.
 G4 = G3
 S4 = <'sunny','warm',?,'strong', ?, ?>

At last, by synchronizing the G4 and S4 algorithms produce the output.
G = {<'sunny', ?, ?, ?, ?, ?>, <?, 'warm', ?, ?, ?, ?>}
S = <'sunny','warm',?,'strong', ?, ?>

Refer Handout-02b Slide-9

● PUZZLE

Q1. Suppose we are having the following Training Examples
Season Weather Play Football
Summer Rain Yes
Winter Dry Yes
Winter Rain No
Figure out what will be the output for the test inputs <Summer, Dry>

Q2. What can machines learn with respect to humans from one Training Example?
Refer Machine Learning, Tom Mitchell

Prepared by ARGHA SEN

