
CS60005 : FOUNDATIONS OF COMPUTING SCIENCE AUTUMN 2024

Tutorial 9
Complexity Theory

Time Complexity

1. For each of the following statements, answer True, False or Open-Question according to our
current state of knowledge of complexity theory, as described in class. Give brief justifications
for your answers.

(a) P ⊆ TIME(𝑛2024
) ?

(b) SAT ≤𝑃 SAT ?
(c) HAMPATH ≤𝑃 PATH ?
(d) PATH ≤𝑃 PATH ?

2. Prove that the following languages (defined over graphs) are in P.

(a) BIPARTITE : the set of all bipartite graphs, i.e., 𝐺 = (𝑉, 𝐸) ∈ BIPARTITE if 𝑉 can be
partitioned into two sets 𝑉1 , 𝑉2 such that every edge in 𝐸 is adjacent to a vertex in 𝑉1 and
a vertex in 𝑉2 (no edge falls inside 𝑉1 or 𝑉2).

(b) TRIANGLE-FREE : the set of all graphs that do not contain a triangle (where triangle is a
set of three distinct vertices that are mutually connected).

3. Normally, we assume that numbers are represented as strings using the binary basis. That

is, a number 𝑛 is represented by the sequence 𝑥0 , 𝑥1 , . . . , 𝑥log 𝑛 such that 𝑛 =
log 𝑛

∑

𝑖=0
𝑥 𝑖2𝑖 .

However, we could have used other encoding schemes. If 𝑛 ∈ N and 𝑏 ≥ 2, then the
representation of 𝑛 in base 𝑏, denoted by ⌞𝑛⌟𝑏 is obtained as follows: first represent 𝑛 as
a sequence of digits in {0, . . . , 𝑏 − 1}, and then replace each digit by a sequence of zeroes and
ones. The unary representation of 𝑛, denoted by ⌞𝑛⌟1 is the string 1𝑛 (that is, a sequence of
𝑛 ones).

(a) Show that choosing a different base of representation (other than unary) will make no
difference to the class P. That is, show that for every subset 𝑆 of the natural numbers, if
we define 𝐿𝑏𝑆 = { ⌞ 𝑛 ⌟𝑏 ∣ 𝑛 ∈ 𝑆}, then for every 𝑏 ≥ 2, 𝐿𝑏𝑆 ∈ P iff 𝐿2

𝑆 ∈ P.
(b) Show that choosing the unary representation makes a difference by showing that the

following language is in P.

UNARY-FACTORING = {⟨⌞𝑛⌟1 ,⌞𝑘⌟1⟩ ∣ there is a 𝑗 ≤ 𝑘 dividing 𝑛}

4. Prove that P = coP and P ⊆NP ∩ coNP.

5. Assuming NP ≠ coNP, show that no NP-complete problem can be in coNP.

6. Show that the halting problem is NP-hard.

7. Consider the following solitaire game. You are given an 𝑚 ×𝑚 board where each one of the
𝑚2 positions may be empty or occupied by either a red stone or a blue stone. Initially, some
configuration of stones is placed on the board. Then, for each column you must remove
either all of the red stones in that column or all of the blue stones in that column. (If a
column already has only red stones or only blue stones in it then you do not have to remove
any further stones from that column.) The objective is to leave at least one stone in each
row. Finding a solution that achieves this (mentioned) objective may or may not be possible
depending upon the initial configuration. Let,

SOLITAIRE = {⟨𝐺⟩ ∣ 𝐺 is a game configuration with a solution}

Prove that, SOLITAIRE is NP-complete.

1

8. Let DOUBLE-SAT = {⟨𝜑⟩ ∣ 𝜑 is a CNF formula having at least two satisfying assignments}.
Show that DOUBLE-SAT is NP-complete.

9. A vertex cover in a graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑆 ⊆ 𝑉 such that every edge of 𝐺 is
incident on at least one vertex in 𝑆. Show that the following language is NP-complete.

VERTEX-COVER = {(𝐺, 𝑘) ∣ graph 𝐺 has a vertex cover of size ≤ 𝑘}

10. Let 𝑆 be a set and let 𝐶 = {𝑋1 , 𝑋2 , . . . , 𝑋𝑛} be a collection of 𝑛 subsets of 𝑆 (for each
𝑖 ∈ [1, 𝑛], 𝑋𝑖 ⊆ 𝑆). A set 𝑆′, with 𝑆′ ⊆ 𝑆, is called a hitting set for 𝐶 if every subset
in 𝐶 contains at least one element in 𝑆′, i.e., ∣𝑋𝑖 ∩ 𝑆′∣ ≥ 1 for each 𝑖 ∈ [1, 𝑛]. Let
HITSET = {⟨𝐶, 𝑘⟩ ∣ 𝐶 has a hitting set of size 𝑘}. Prove that HITSET is NP-complete.

Example: 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 , 𝑔}, 𝐶 = {{𝑎, 𝑏, 𝑐}, {𝑑, 𝑎}, {𝑑, 𝑒 , 𝑓 }, {𝑔}}

• 𝑘 = 2, no hitting sets exist. • 𝑘 = 3, 𝑆′ = {𝑎, 𝑑, 𝑔} (other choices exist).

Hint: Try reducing from VERTEX-COVER.

11. [Scaling Resource Bounds] Let CL1 ,CL2 denote some time/space complexity classes. Show
that, if CL1(𝑓 (𝑛)) ⊆ CL2(𝑔(𝑛)), then CL1(𝑓 (𝑛

𝑐
)) ⊆ CL2(𝑔(𝑛

𝑐
)).

12. The following two classes are exponential time analogues of P and NP.

EXP = ⋃
𝑐≥1

DTIME(2𝑛
𝑐

) and NEXP = ⋃
𝑐≥1

NTIME(2𝑛
𝑐

)

Clearly, P ⊆NP ⊆ EXP ⊆NEXP. Show that, if EXP ≠NEXP, then P ≠NP.
Hint: Consider padding strings in EXP/NEXP languages with exponentially sized strings in order
to “scale down” to P/NP.

2

