CS60005 : FOUNDATIONS OF COMPUTING SCIENCE AUTUMN 2024

Tutorial 8
Computability Theory

Recursive and R.E. Languages, (Un)Decidability, Reduction and Rice’s Theorem

1. For a language L over the alphabet {0, 1}, define the following two languages:

HALF{(L) = {x | x € £*, and there exists y € X" such that |x| = |y| and xy € L}
HALF.(L) = {x | x € ¥, and there exists y € L such that x| = |y| and yx € L}

Prove/Disprove the following (for k = 1 and k = 2):
(a) If L is R.E. (recursively enumerable), then HALF(L) must be R.E..

(b) If L is recursive, then HALFy (L) must be recursive.

2. Consider the following languages for (finite) k € N:

LOOP,e = {M | Mis (the encoding of) a DTM that loops on at most k input strings }
LOOPGe

{M | M is (the encoding of) a DTM that loops on at least k input strings }

LOOP,r = {M| M is (the encoding of) a DTM that loops on less than k input strings}
LOOPgr = {M | M is (the encoding of) a DTM that loops on more than k input strings}
LOOPgq = {M | M is (the encoding of) a DTM that loops on exactly k input strings}

Determine whether the above languages (and the complements of these languages) are
recursive, R.E., or non-R.E.

3. Consider the following languages for (finite) k € N:

HALT g = {M | M is (the encoding of) a DTM that halts on at most k input strings}
HALTge = {M | M is (the encoding of) a DTM that halts on at least k input strings}
HALT.r = {M| M is (the encoding of) a DTM that halts on less than k input strings}
HALTgr = {M | M is (the encoding of) a DTM that halts on more than k input strings}
HALTgq = {M | M is (the encoding of) a DTM that halts on exactly k input strings}

Determine whether the above languages (and the complements of these languages) are
recursive, R.E., or non-R.E.

4. Let N be a Non-deterministic Turing machine (NTM). We say that N faces a dilemma if at
some point in its working, it encounters a situation where the finite control is in the state
p, the head scans the tape symbol a, and 6(p, a) offers multiple (two or more) possibilities,
where p is neither the accept nor the reject state. Consider the following two languages.

DILEMMA. = {N | N isan NTM which faces a dilemma at least once on input €},
DILEMMA,

{N | N is an NTM which faces a dilemma at least once on each input}.

Answer the following.
(a) Prove that DILEMMA, is R.E., but not recursive.
(b) Prove that DILEMMA, is non-R.E. (not recursively enumerable).

1

5.

6.

7.

8.

10.

11.

12.
13.

14.

Show that the following language is decidable.
ODFA = { M | M is a DFA not accepting any string with odd number of 1s}

(Hint: For a DFA M, the problem of whether or not L(M) = ¢ is decidable.)

Recall that the halting problem for linear bounded automaton (LBA) is decidable. Prove by
diagonalization that there exists a recursive set that is not accepted by any LBA.

Show, using reductions, that none of the following languages nor their complements are R.E.
(a) REG = {M | LM)isa regular} (c) REC = {M | LIM)isa recursive}

(b) CFL = {M | LIM)isa Context-free} (d) TOT = {M | M halts on all inputs}

Now, use Rice’s theorems to prove the same (as asked above).

3x+1, ifxisodd
x/2, if xis even
(x, f(x), f(f(x)), ...) which terminates if and when it hits 1. For example, if x = 7, then

Let f(x) = { for any natural number x. Define C(x) as the sequence

C(x) = (7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1)

Computer tests have shown that C(x) hits 1 eventually for x ranging from 1 to 268 x~ 2.95%x10%
(as of 2024). But, the question of whether C(x) ends at 1 for all x € N is not proven. This is
believed to be true and known as the Collatz conjecture. Suppose that MP were decidable by
aTM K. Use K to describe a TM that is guaranteed to prove or disprove Collatz conjecture.

Prove or Disprove: The language { M | M is a DTM that runs in time O(1%)} is undecidable.

For a language A C I* (with |Z| > 2), define AR = {w® | w € A}, where wR denotes the
reverse of the string w. Is it decidable, for a given TM M, whether £(M) = L(M)R?

Prove/Disprove whether the following problems on a TM M are decidable for (finite) k € N.

(a) Decide whether M halts on some input within k steps.
(b) Decide whether M halts on some input beyond k steps.
(c) Decide whether M halts on all inputs within k steps.

(d) Decide whether M halts on all inputs beyond k steps.
(e) Decide whether M runs for at least k¥ steps for input aF.
(f) Decide whether M runs for at most k* steps for input a*.
(g) Decide whether M on input € moves left at least k times.

(h) Decide whether M on a given input w moves left at least k times.
Is the problem whether a TM on any input re-enters the start state decidable or not? Prove.
Prove that the following languages are not recursive.

(a) TMB = {M # w | M writes the blank symbol at some point of time on input w}
(b) TMS = {M # w #$ | M writes the symbol $ € I at some point of time on input w}

Determine whether the following languages are recursive, R.E. or neither? Justify the answer.

(@) Lgg = {M | L(M) contains at least 2024 elernents}
(b) Lig = {M | L(M) contains at most 2024 elements}
(c) Lgg = {M | L(M) contains exactly 2024 elements}

2

15. Determine whether the following languages are recursive, R.E. or neither? Justify the answer.

(@) Lam = {M | M accepts at most 2024 input strings}

(b) Lap = {M | M accepts at least 2024 input strings}

(0) Laa = {M | M accepts all strings of length < 2024}

(d) Las = {M | M accepts some strings of length > 2024}

(e) Lna = {M | M does not accept all strings of length > 2024}
(f) Lns = {M | M does not accept some string of length < 2024}

16. For two TMs (M, N), determine whether the following are decidable, semi-decidable, or not.

(a) M takes more steps than N on input €.
(b) M does not take more steps than N on input €.

17. Let nsteps(M, w) denote the number of steps taken by M on w. If M loops on w, take
nsteps(M,w) = oo. If N also loops on v, take nsteps(M,w) = nsteps(N,v). Prove
whether the following languages are Recursive, or R.E. but not Recursive, or non-R.E.

(@) L, = {M # N | nsteps(M, €) < nsteps(N, e)}
(b) L, = {M # N | nsteps(M, €) < nsteps(N, e)}
(c) Ls = {M # N | nsteps(M, w) < nsteps(N, v) for some w, v}
(d) Ly = {M # N | nsteps(M, w) < nsteps(N, v) for all w, v}
18. Using reductions, prove that the following languages are not recursive (undecidable).
(a) Lo = {M# N | LIM) = LIN)} (€) Le = {M# N | LIM)N L(N) is regular}
(b) Ly = {M#N | LM) € LIN)} (f) Ly = {M#N | LIM) N L(N) is context-free}
(@ Le= {M#N| LM)NLN) = ¢} (8) Lg = {M#N | LIM) N L(N) is recursive}
(d) Lo = {M#N| LIM)N L(N)is finite} (h) L, = {M#EN#P | LIM)NLIN) = L(P)}

19. Prove/Disprove: No non-trivial property of recursively enumerable languages is semidecidable.

20. [Generalization of Rice’s Theorem for Pairs of R.E. Languages] Consider the set of pairs of
R.E. languages: RE? = {(L, L)|L,L € RE}. Answer the following.
(a) Define a property of pairs of R.E. languages.
(b) How do you specify a property of a pair of R.E. languages?
(c) Which properties of pairs of R.E. languages should be called non-trivial?
(d) Prove that every non-trivial property of pairs of R.E. languages is undecidable.

21. Use the previous exercise to prove that the following problems about pairs of R.E. languages
are undecidable.

(@) LM) = L(N) (f) LM)(L(N) is recursive
(b) LIM) € L(N) (g) LM)ULIN)=1"

() LM)NLIN)=¢ (h) LMYULIN)=¢

(d) LM) (N L(N) is finite (i) LM) U L(N) is finite

(e) LIM)N L(N)is context-free (G) LM) U L(N) is recursive

22. Generalize Rice’s theorem, Part 2 (monotone-property related), for pairs of R.E. languages.

