Tutorial 8 Computability Theory

Recursive and R.E. Languages, (Un)Decidability, Reduction and Rice's Theorem

1. For a language *L* over the alphabet {0, 1}, define the following two languages:

 $\mathsf{HALF}_1(L) = \{x \mid x \in \Sigma^*, \text{ and there exists } y \in \Sigma^* \text{ such that } |x| = |y| \text{ and } xy \in L\}$ $\mathsf{HALF}_2(L) = \{x \mid x \in \Sigma^*, \text{ and there exists } y \in \Sigma^* \text{ such that } |x| = |y| \text{ and } yx \in L\}$

Prove/Disprove the following (for k = 1 and k = 2):

(a) If *L* is R.E. (recursively enumerable), then $HALF_k(L)$ must be R.E..

(b) If *L* is recursive, then $HALF_k(L)$ must be recursive.

2. Consider the following languages for (finite) $k \in \mathbb{N}$:

LOOP _{LE}	=	$\{\mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that loops on at most k input strings}\}$
LOOP _{GE}	=	$\{\mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that loops on at least k input strings}\}$
LOOP _{LT}	=	$\{\mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that loops on less than k input strings}\}$
$LOOP_GT$	=	$\{\mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that loops on more than } k \text{ input strings}\}$
LOOP _{EQ}	=	$\{\mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that loops on exactly k input strings}\}$

Determine whether the above languages (and the complements of these languages) are recursive, R.E., or non-R.E.

3. Consider the following languages for (finite) $k \in \mathbb{N}$:

 $\begin{aligned} \mathsf{HALT}_{\mathsf{LE}} &= \left\{ \mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that halts on at most } k \text{ input strings} \right\} \\ \mathsf{HALT}_{\mathsf{GE}} &= \left\{ \mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that halts on at least } k \text{ input strings} \right\} \\ \mathsf{HALT}_{\mathsf{LT}} &= \left\{ \mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that halts on less than } k \text{ input strings} \right\} \\ \mathsf{HALT}_{\mathsf{GT}} &= \left\{ \mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that halts on more than } k \text{ input strings} \right\} \\ \mathsf{HALT}_{\mathsf{EQ}} &= \left\{ \mathcal{M} \mid \mathcal{M} \text{ is (the encoding of) a DTM that halts on exactly } k \text{ input strings} \right\} \end{aligned}$

Determine whether the above languages (and the complements of these languages) are recursive, R.E., or non-R.E.

4. Let N be a Non-deterministic Turing machine (NTM). We say that N faces a dilemma if at some point in its working, it encounters a situation where the finite control is in the state p, the head scans the tape symbol a, and $\delta(p, a)$ offers multiple (two or more) possibilities, where p is neither the accept nor the reject state. Consider the following two languages.

DILEMMA_{ϵ} = { $N \mid N$ is an NTM which faces a dilemma at least once on input ϵ }, DILEMMA_{\star} = { $N \mid N$ is an NTM which faces a dilemma at least once on each input}.

Answer the following.

- (a) Prove that DILEMMA $_{\epsilon}$ is R.E., but not recursive.
- (b) Prove that DILEMMA $_{\star}$ is non-R.E. (not recursively enumerable).

5. Show that the following language is decidable.

 $ODFA = \{M \mid M \text{ is a DFA not accepting any string with odd number of } 1's\}$

(*Hint*: For a DFA \mathcal{M} , the problem of whether or not $\mathcal{L}(\mathcal{M}) = \phi$ is decidable.)

- 6. Recall that the halting problem for linear bounded automaton (LBA) is decidable. Prove by diagonalization that there exists a recursive set that is not accepted by any LBA.
- 7. Show, using reductions, that none of the following languages nor their complements are R.E.
 - (a) $\mathsf{REG} = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ is a regular} \}$ (c) $\mathsf{REC} = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ is a recursive} \}$
 - (b) $CFL = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ is a context-free} \}$ (d) $TOT = \{ \mathcal{M} \mid \mathcal{M} \text{ halts on all inputs} \}$

Now, use Rice's theorems to prove the same (as asked above).

8. Let $f(x) = \begin{cases} 3x + 1, & \text{if } x \text{ is odd} \\ x/2, & \text{if } x \text{ is even} \end{cases}$ for any natural number x. Define C(x) as the sequence $(x, f(x), f(f(x)), \dots)$ which terminates if and when it hits 1. For example, if x = 7, then

$$C(x) = (7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)$$

Computer tests have shown that C(x) hits 1 eventually for x ranging from 1 to $2^{68} \approx 2.95 \times 10^{20}$ (as of 2024). But, the question of whether C(x) ends at 1 for all $x \in \mathbb{N}$ is not proven. This is believed to be true and known as the *Collatz conjecture*. Suppose that MP were decidable by a TM \mathcal{K} . Use \mathcal{K} to describe a TM that is guaranteed to prove or disprove Collatz conjecture.

- 9. Prove or Disprove: The language $\{\mathcal{M} \mid \mathcal{M} \text{ is a DTM that runs in time } O(n^3)\}$ is undecidable.
- 10. For a language $A \subseteq \Sigma^*$ (with $|\Sigma| \ge 2$), define $A^R = \{w^R \mid w \in A\}$, where w^R denotes the reverse of the string w. Is it decidable, for a given TM \mathcal{M} , whether $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M})^R$?
- 11. Prove/Disprove whether the following problems on a TM M are decidable for (finite) $k \in \mathbb{N}$.
 - (a) Decide whether \mathcal{M} halts on some input within k steps.
 - (b) Decide whether \mathcal{M} halts on some input beyond k steps.
 - (c) Decide whether \mathcal{M} halts on all inputs within k steps.
 - (d) Decide whether \mathcal{M} halts on all inputs beyond k steps.
 - (e) Decide whether \mathcal{M} runs for at least k^k steps for input a^k .
 - (f) Decide whether \mathcal{M} runs for at most k^k steps for input a^k .
 - (g) Decide whether \mathcal{M} on input ϵ moves left at least k times.
 - (h) Decide whether \mathcal{M} on a given input w moves left at least k times.
- 12. Is the problem whether a TM on any input re-enters the start state decidable or not? Prove.
- 13. Prove that the following languages are not recursive.
 - (a) TMB = { $M \# w \mid M$ writes the blank symbol at some point of time on input w}
 - (b) TMS = { $\mathcal{M} # w # \$ | \mathcal{M}$ writes the symbol $\$ \in \Gamma$ at some point of time on input w}
- 14. Determine whether the following languages are recursive, R.E. or neither? Justify the answer.
 - (a) $L_{GE} = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ contains at least 2024 elements} \}$
 - (b) $L_{LE} = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ contains at most 2024 elements} \}$
 - (c) $L_{EQ} = \{ \mathcal{M} \mid \mathcal{L}(\mathcal{M}) \text{ contains exactly 2024 elements} \}$

- 15. Determine whether the following languages are recursive, R.E. or neither? Justify the answer.
 - (a) $L_{AM} = \{ \mathcal{M} \mid \mathcal{M} \text{ accepts at most 2024 input strings} \}$
 - (b) $L_{AL} = \{ \mathcal{M} \mid \mathcal{M} \text{ accepts at least 2024 input strings} \}$
 - (c) $L_{AA} = \{ \mathcal{M} \mid \mathcal{M} \text{ accepts all strings of length } \leq 2024 \}$
 - (d) $L_{AS} = \{ \mathcal{M} \mid \mathcal{M} \text{ accepts some strings of length} \ge 2024 \}$
 - (e) $L_{NA} = \{ \mathcal{M} \mid \mathcal{M} \text{ does not accept all strings of length} \geq 2024 \}$
 - (f) $L_{NS} = \{ \mathcal{M} \mid \mathcal{M} \text{ does not accept some string of length} \le 2024 \}$
- 16. For two TMs (\mathcal{M} , \mathcal{N}), determine whether the following are *decidable*, *semi-decidable*, or *not*.
 - (a) M takes more steps than N on input ϵ .
 - (b) \mathcal{M} does not take more steps than \mathcal{N} on input ϵ .
- 17. Let $nsteps(\mathcal{M}, w)$ denote the number of steps taken by \mathcal{M} on w. If \mathcal{M} loops on w, take $nsteps(\mathcal{M}, w) = \infty$. If \mathcal{N} also loops on v, take $nsteps(\mathcal{M}, w) = nsteps(\mathcal{N}, v)$. Prove whether the following languages are *Recursive*, or *R.E. but not Recursive*, or *non-R.E*.
 - (a) $L_1 = \{ \mathcal{M} \# \mathcal{N} \mid \operatorname{nsteps}(\mathcal{M}, \epsilon) < \operatorname{nsteps}(\mathcal{N}, \epsilon) \}$
 - (b) $L_2 = \{ \mathcal{M} \# \mathcal{N} \mid \operatorname{nsteps}(\mathcal{M}, \epsilon) \leq \operatorname{nsteps}(\mathcal{N}, \epsilon) \}$
 - (c) $L_3 = \{ \mathcal{M} \# \mathcal{N} \mid \mathsf{nsteps}(\mathcal{M}, w) < \mathsf{nsteps}(\mathcal{N}, v) \text{ for some } w, v \}$
 - (d) $L_4 = \{ \mathcal{M} \# \mathcal{N} \mid \operatorname{nsteps}(\mathcal{M}, w) < \operatorname{nsteps}(\mathcal{N}, v) \text{ for all } w, v \}$
- 18. Using reductions, prove that the following languages are not recursive (undecidable).
 - (a) $L_a = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{N})\}$ (b) $L_b = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{N})\}$ (c) $L_b = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{N})\}$ (c) $L_f = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) \text{ is context-free}\}$ (c) $L_b = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{N})\}$ (c) $L_b = \{\mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) \text{ is context-free}\}$
 - (c) $L_c = \{ \mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) = \phi \}$ (g) $L_g = \{ \mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) \text{ is recursive} \}$
 - (d) $L_d = \{ \mathcal{M} \# \mathcal{N} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) \text{ is finite} \}$ (h) $L_h = \{ \mathcal{M} \# \mathcal{N} \# \mathcal{P} \mid \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{P}) \}$
- 19. Prove/Disprove: No non-trivial property of recursively enumerable languages is semidecidable.
- 20. [Generalization of Rice's Theorem for Pairs of R.E. Languages] Consider the set of pairs of R.E. languages: $RE^2 = \{(L, L') | L, L' \in RE\}$. Answer the following.
 - (a) Define a property of pairs of R.E. languages.
 - (b) How do you specify a property of a pair of R.E. languages?
 - (c) Which properties of pairs of R.E. languages should be called non-trivial?
 - (d) Prove that every non-trivial property of pairs of R.E. languages is undecidable.
- 21. Use the previous exercise to prove that the following problems about pairs of R.E. languages are undecidable.
 - (a) $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{N})$
 - (b) $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{N})$
 - (c) $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N}) = \phi$
 - (d) $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N})$ is finite
 - (e) $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N})$ is context-free
- (f) $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{N})$ is recursive
- (g) $\mathcal{L}(\mathcal{M}) \cup \mathcal{L}(\mathcal{N}) = \Sigma^*$
- (h) $\mathcal{L}(\mathcal{M}) \cup \mathcal{L}(\mathcal{N}) = \phi$
- (i) $\mathcal{L}(\mathcal{M}) \bigcup \mathcal{L}(\mathcal{N})$ is finite
- (j) $\mathcal{L}(\mathcal{M}) \cup \mathcal{L}(\mathcal{N})$ is recursive

22. Generalize Rice's theorem, Part 2 (monotone-property related), for pairs of R.E. languages.