Tutorial 6 Language and Automata Theory

Context-free Languages and Push-down Automata

- 1. What context-free languages will be generated by the following two (separate) context-free grammars, $G = (\{S, A, B\}, \{a, b, c\}, P, S)$, where P consists of the following production rules?
 - (a) $S \rightarrow ASB \mid \varepsilon$ (b) $S \rightarrow abScB \mid \varepsilon$ $B \rightarrow bB \mid b$ $A \rightarrow a$ $B \rightarrow bb \mid b$
- 2. Define the context-free grammars for the following context-free languages. Are your defined CFGs ambiguous / non-ambiguous?
 - $L_{2a} = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } i = k\}$
 - $L_{2b} = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k\}$
 - $L_{2c} = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i + j = k\}$
 - $L_{2d} = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i + k = j\}$
 - $L_{2e} = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i + k < j\}$
 - $L_{2f} = \{w \mid w \in a, b^* \text{ and } w \neq w^{rev}\} = \text{ all non-palindromes over } \{a, b\}$

Now, design (separate) push-down automata which accepts all of the above CFL. State whether your PDA accepts by final state or empty stack.

- 3. Which of the following language(s) is/are context-free? Give justifications For CFL, you need to give the CFG, otherwise you have to prove using Pumping Lemma for CFL.
 - $L_{3a} = \{a^m b^n \mid m, n \ge 0, m = 2n\}$ $L_{3g} = \{a^m b^n c^{m+n} \mid m, n \ge 1\}$
 - $L_{3b} = \{a^m b^n \mid m, n \ge 0, m \ne 2n\}$ $L_{3h} = \{a^m b^m c^{m+n} \mid m, n \ge 1\}$

 - $L_{3e} = \{a^k \mid k \text{ is a power of } 2\}$
 - $L_{3f} = \{x \in \{0, 1\}^* \mid \overline{x} = x^{\mathbf{R}}\}.$
 - Here, \overline{x} denotes the Boolean complement and $x^{\mathbf{R}}$ denotes the reverse of the string x.
- 4. A context-free grammar G is called *ambiguous* if some string in $\mathcal{L}(G)$ has two different derivation/parse trees. Answer the following.
 - (a) Show that, the following context-free grammar, $G = (\{S\}, \{a, b, c\}, P, S)$, with the production rules (*P*) defined as: $S \rightarrow aS \mid aSbS \mid c$, is ambiguous.
 - (b) Construct a non-ambiguous grammar, G', that derives the same language.
 - (c) Also prove $\mathcal{L}(G) = \mathcal{L}(G')$.
- 5. Consider the following context-free grammar $G = (\{S, A, B\}, \{a, b\}, P, S)$ with P containing the following production rules: $S \rightarrow ABS \mid AB, A \rightarrow aA \mid a, B \rightarrow bA$. Which of the following strings are in $\mathcal{L}(G)$ and which are not?
 - (c) aabbaa, (a) *aabaab*, (b) aaaaba, (d) abaaba.

Provide derivations for those that are in $\mathcal{L}(G)$ and reasons for those that are not.

- $L_{3c} = \{a^m b^n \mid n \ge 0, 3n \le m \le 5n\}$ $L_{3d} = \{a^m b^n \mid m, n \ge 1 \text{ and } n \ne 2m\}$ $L_{3i} = \{a^l b^m c^n \mid l \ge 0, l < m \text{ and } l < n\}$ $L_{3j} = \{a^n b^m c^k \mid n, m, k \ge 1 \text{ and } n + k = m\}$
 - $L_{3k} = \{a^p \mid p \text{ is a prime}\}$
 - $L_{3l} = \{a^{q!} \mid q \ge 0\}$

- 6. Given the following languages over the alphabet {*a*, *b*}, design one-state PDAs that accepts by empty stack (separate PDA for each one).
 - (a) $L_{6a} = \mathcal{L}((a+b)^*b)$
 - (b) $L_{6b} = \mathcal{L}(a(a+b)^*b)$
 - (c) L_{6c} = set of all palindromes over {a, b}

Additionally, explore the following:

- (a) Since L_{6a} and L_{6b} are regular languages, can you directly present the left linear and the right linear grammar for them and then formally derive the NFAs from these grammars?
- (b) Can you also develop two (separate) DFAs for L_{6a} and L_{6b} directly? Then, from those DFAs, can you again formally derive the grammars for the same?
- 7. Consider the two CFGs *G* and *G*' with the start symbols *S* and *S*' and with the only productions:

Productions of G: $S \to aS \mid B$, $B \to bB \mid b$ Productions of G': $S' \to aA' \mid bB'$, $A' \to aA' \mid B'$, $B' \to bB' \mid \varepsilon$

Prove that, $\mathcal{L}(G) \subset \mathcal{L}(G')$, i.e., $\mathcal{L}(G)$ is strictly contained in $\mathcal{L}(G')$.

8. Convert the following context-free grammars into equivalent CFG in Chomsky Normal Form. Then, proceed converting these Chomsky Normal Form CFGs into Greibach Normal Form CFGs.

(a)	$S \rightarrow$	$BSB \mid B \mid \varepsilon$	(b)	$S \rightarrow$	ABa ε	(c)	$S \rightarrow$	AbA
	$B \rightarrow$	00 ε		$A \rightarrow$	aab		$A \rightarrow$	Aa e
				$B \rightarrow$	Ac			

- 9. Provide grammars in Chomsky normal form for the following languages.
 - (a) $L_{9a} = \left\{ a^n b^{2n} c^k \mid k, n \ge 1 \right\}$
 - (b) $L_{9b} = \{a, b\}^* \{x \in \{a, b\}^* \mid x = x^{\mathbb{R}}\}$, where $x^{\mathbb{R}}$ denotes the reverse of the string x.
 - (c) $L_{9c} = \{a^n b^k c^n \mid k, n \ge 1\}$