Tutorial 4 Discrete Mathematics

Algebraic Structures

- 1. Let *G* be the set of all points on the hyperbola xy = 1 along with the point $(0, \infty)$ at infinity. Define $(a, \frac{1}{a}) + (b, \frac{1}{b}) = (a + b, \frac{1}{a+b})$. Prove that, *G* is an abelian group under this operation.
- 2. Define an operation \circ on $G = \mathbb{R}^* \times \mathbb{R}$ as $(a, b) \circ (c, d) = (ac, bc + d)$. Prove that, (G, \circ) is a non-abelian group.
- 3. Let *G* be a non-abelian group, and $a, b \in G$. Prove that, ord(ab) = ord(ba).
- 4. Let *G* be a (multiplicative) group, and *H*, *K* are subgroups of *G*. Prove that,
 - (a) $H \cap K$ is a subgroup of *G*.
 - (b) $H \cup G$ need not be a subgroup of G.
 - (c) $H \cup K$ is a subgroup of *G* if and only if $H \subseteq K$ or $K \subseteq H$.
 - (d) Define $HK = \{hk \mid h \in H, k \in K\}$. Define *KH* analogously. Prove that, *HK* is a subgroup of *G* if and only if *HK* = *KH*.
- 5. Let *G* be a finite group, and $h = \operatorname{ord}(a)$ for some $a \in G$. Prove that $\operatorname{ord}(a^k) = \frac{h}{\operatorname{gcd}(h,k)}$ for all $k \in \mathbb{Z}$.
- 6. Let $R = \mathbb{Z} \times \mathbb{Z}$, and r, s be constant integers. Define two operations, on R as follows: (a, b) + (c, d) = (a + c, b + d) and (a, b) * (c, d) = (ad + bc + rac, bd + sac).
 - (a) Prove that, *R* is a ring under these operations, + and *.
 - (b) Prove that *R* is an integral domain *if and only if* $(r^2 + 4s)$ is not a perfect square.
- 7. Let $R_1, R_2, ..., R_n$ be rings. Prove that, the Cartesian product $(R_1 \times R_2 \times \cdots \times R_n)$ is a ring under component-wise addition and multiplication. Show that, if each R_i is a ring with identity, then so also is the product.
- 8. Let *R* be a commutative ring with identity. Prove that, the set R[x] of all univariate polynomials with coefficients from *R* is again a commutative ring with identity (under polynomial addition and multiplication).
- 9. Let us define the following sets:

$$\mathbb{Z}[\sqrt{5}] = \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Z} \right\} \text{ and } \mathbb{Z}[\sqrt{-5}] = \left\{ a + b\sqrt{-5} \mid a, b \in \mathbb{Z} \right\}$$
$$\mathbb{Q}[\sqrt{5}] = \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Q} \right\} \text{ and } \mathbb{Q}[\sqrt{-5}] = \left\{ a + b\sqrt{-5} \mid a, b \in \mathbb{Q} \right\}$$

Answer the following.

- (a) Prove that $\mathbb{Z}[\sqrt{5}]$ is an integral domain. Argue that $\mathbb{Z}[\sqrt{5}]$ contains infinitely many units.
- (b) Prove that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain. Find all the units of this ring.
- (c) Prove that $\mathbb{Q}[\sqrt{5}]$ is a field.
- (d) Prove that $\mathbb{Q}[\sqrt{-5}]$ is a field.

10. Let (S, \circ) and (T, \star) be two algebraic systems. A function $f : S \to T$ is called a *homomorphism* if for any $s_1, s_2 \in S$, we have $f(s_1 \circ s_2) = f(s_1) \star f(s_2)$.

f is called – (i) an *epimorphism* if it is onto (surjective); (ii) a *monomorphism* if it is one-to-one (injective); and (iii) an *isomorphism* if it is a bijection.

Answer the following.

- (a) Define a homomorphism from $(\mathbb{N}, +)$ to $(\mathbb{Z}_4, +)$. Determine whether the map you define is an epimorphism, monomorphism or both.
- (b) Consider the algebraic system $(T = \{1, \omega, \omega^2\}, \bullet)$ (here, \bullet is multiplication and $\omega^3 = 1$). Show that (T, \bullet) is a group. Is it abelian too?
- (c) Show that (T, \bullet) is isomorphic to $(\mathbb{Z}_3, +)$.
- 11. Show that the following systems are semi-groups. Are any of them monoids?
 - (a) $(2^X, \cup)$ where *X* is a finite set.
 - (b) $(2^X, \cap)$ where *X* is a finite set.
 - (c) (\mathbb{Z}^+, \max) where for $x, y \in \mathbb{Z}^+$, $\max(x, y)$ is the maximum of x and y.
 - (d) (\mathbb{N}, \max) .