Tutorial 3 Discrete Mathematics

Countable and Uncountable Sets

- 1. Let *A* and *B* be uncountable sets with $A \subseteq B$. Prove or disprove: *A* and *B* are equinumerous.
- 2. Let *A* be an uncountable set and *B* a countably infinite subset of *A*. Prove or disprove: *A* is equinumerous with $A \setminus B$.
- 3. Prove that the real interval [0, 1) is equinumerous with the unit square $[0, 1) \times [0, 1)$.
- 4. Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d. Show that, $[a, b) \times [c, d)$ is equinumerous with [0, 1).
- 5. Define a relation ~ on \mathbb{R} such that $a \sim b$ if and only if $a b \in \mathbb{Q}$. Answer the following:
 - (a) Prove that \sim is an equivalence relation.
 - (b) Is the set \mathbb{R}/\sim of all equivalence classes of \sim countable?
- 6. Let $f : S \to \mathbb{N}$ be a one-one correspondence of set S with \mathbb{N} . Define a relation \mathcal{R}_f on S as: $\mathcal{R}_f = \{(a, b) \in S^2 \mid f(a) \leq f(b)\}$. Prove that, \mathcal{R}_f is a linear ordering on S such that every element of S has only finitely many predecessors under \mathcal{R}_f .
- Let Z[x] denote the set of all univariate polynomials with integer coefficients.
 Answer the following:
 - (a) Prove that $\mathbb{Z}[x]$ is countable.
 - (b) A real or complex number *a* is called algebraic if f(a) = 0 for some non-zero $f(x) \in \mathbb{Z}[x]$. Let \mathbb{A} denote the set of all algebraic numbers. Prove that \mathbb{A} is countable.
 - (c) Prove that there are uncountably many transcendental (i.e. non-algebraic) numbers.
- 8. Let $\mathbb{Z}[x, y]$ be the set of all bivariate polynomials with integer coefficients. Answer the following:
 - (a) Prove that $\mathbb{Z}[x, y]$ is countable.
 - (b) Let $V = \{(a, b) \in \mathbb{C} \times \mathbb{C} \mid f(a, b) = 0 \text{ for some nonzero } f(x, y) \in \mathbb{Z}[x, y]\}$. Is *V* countable?
- 9. A set $S \subseteq \mathbb{R}$ is called bounded if *S* has both a lower bound and an upper bound.

Provide examples for the following.

- (a) Countable bounded subset of \mathbb{R} .
- (b) Uncountable bounded subset of \mathbb{R} .

Determine whether the following sets are countable/uncountable?

- (c) The set of all bounded subsets of \mathbb{Z} .
- (d) The set of all bounded subsets of \mathbb{Q} .
- 10. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.