Tutorial 2 Discrete Mathematics

Set, Relation and Function

1. Show the following.

(a) If $a \in \{\{b\}\}$, then $b \in a$.

(b) If
$$C = \{\{x\} \mid b \in B\}$$
, then $\bigcup_{X \in C} X = B$.

2. Prove that for all sets *A*, *B* the following statements are equivalent

(a) $A \subseteq B$, (b) $A \setminus B = \phi$, (c) $A \cup B = B$, (d) $A \cap B = A$.

- 3. Let $A, B, C \in \mathcal{U}$ are three arbitrary sets such that, $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Prove that, B = C.
- 4. For two sets *A*, *B*, the symmetric difference $A \Delta B$ is defined as $(A \setminus B) \cup (B \setminus A)$. Prove the following for all sets *A*, *B*, *C*.
 - (a) $A\Delta B = (A \cup B) \setminus (A \cap B)$
 - (b) If $A \setminus C = B \setminus C$, then $A \Delta B \subseteq C$.
 - (c) $A\Delta B = \phi$ if and only if A = B.
- 5. Let *A* be the set of all cities in India. Define a binary relation \mathcal{R} on *A* as follows: for $x, y \in A$, $(x, y) \in \mathcal{R}$ if the distance between *x* and *y* is at most 2024 km. Determine whether or not \mathcal{R} is reflexive, asymmetric, transitive, anti-symmetric or irreflexive.
- 6. A relation π is circular if $(x, y), (y, z) \in \pi$ implies $(z, x) \in \pi$. Prove that π is an equivalence relation if and only if it is both circular and reflexive.
- 7. Let ρ be a total order on A. We call ρ a *well-ordering* of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.
 - (a) Define a relation ρ on A as $(a, b) \rho(c, d)$ if and only if $a \le c$ or $b \le d$.
 - (b) Define a relation σ on A as $(a, b) \sigma (c, d)$ if and only if $a \le c$ and $b \le d$.
 - (c) Define a relation \leq_L on A as $(a, b) \leq_L (c, d)$ if either (i) a < c, or (ii) a = c and $b \leq d$.

Prove or disprove: ρ , σ , \leq_L is a well-ordering of A.

- 8. Let *A* be the set of all functions $\mathbb{N}_0 \to \mathbb{R}^+$. Define a relation Θ on *A* as $f \Theta g$ if and only if $f = \Theta(g)$. Define a relation *O* on *A* as f O g if and only if f = O(g). Answer the following:
 - (a) Prove that Θ is an equivalence relation.
 - (b) Argue that *O* is not a partial order.

Redefine the relation O on A/Θ as [f] O [g] if and only if f = O(g). Answer the following:

- (c) Establish that the relation *O* is well-defined.
- (d) Prove that *O* is a partial order on A/Θ .
- (e) Prove or disprove: *O* is a total order on A/Θ .
- (f) Prove or disprove: A/Θ is a lattice under *O*.

- 9. **[Genesis of rational numbers]** Define a relation ρ on $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as $(a, b) \rho$ (c, d) if and only if ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set \mathbb{Q} of rational numbers.
- 10. Which of the following are bijections? Justify your answer.
 - (a) $f : \mathbb{Z} \to \mathbb{Z}$, where $f(n) = (-1)^{|n|} n$ for every $n \in \mathbb{Z}$.
 - (b) $f : \mathbb{Z} \to \mathbb{Z}_{19}$, where $f(n) = n \mod 19$ for every $n \in \mathbb{Z}$.
 - (c) $f : \mathbb{R} \to C$, where $f(x) = x^3$ for all $x \in \mathbb{R}$.
 - (d) $f : \mathbb{N} \to \mathbb{N}$, where $f(n) = \begin{cases} n+1, & \text{if } n \text{ is even} \\ n-1, & \text{if } n \text{ is odd} \end{cases}$.
- 11. For a function, $f : A \to B$, define a function $\mathcal{F} : \mathcal{P}(A) \to \mathcal{P}(B)$ as $\mathcal{F}(S) = f(S)$ for all $S \subseteq A$. Here, $f(S) = \{f(s) \mid s \in S\}$. Prove the following:
 - (a) \mathcal{F} is injective if and only if f is injective.
 - (b) \mathcal{F} is surjective if and only if *f* is surjective.
- 12. Let $f : A \to B$ be a function and σ an equivalence relation on *B*. Define a relation ρ on *A* as: $a \rho a'$ if and only if $f(a) \sigma f(a')$. Answer the following:
 - (a) Prove that, ρ is an equivalence relation on *A*.
 - (b) Prove or disprove: ρ defines a partial order over *A*.

Define a map $\overline{f} : A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Answer the following:

- (c) Prove that, \bar{f} is well-defined.
- (d) Prove that, \overline{f} is injective.
- (e) Prove or disprove: If f is a bijection, then so also is \overline{f} .
- (f) Prove or disprove: If \overline{f} is a bijection, then so also is f.
- 13. Let *S* be a set. A characteristic function over *S* is a function $\chi : S \to \{0,1\}$. If $A \subseteq S$, then the characteristic function of *A* is $\chi_A : S \to \{0,1\}$ given by $\chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases}$.

Prove that there exists a bijection between 2^S and the set of all Boolean function on *S*, that is, $(S \rightarrow \{0, 1\})$.

- 14. Let Σ be an alphabet which is totally ordered, that is, for every $a, b \in \Sigma$, either $a \leq b$ or $b \leq a$. Consider the set Σ^* . We define the lexicographic ordering \leq on Σ^* as follows. Let $x = x_1x_2 \cdots x_n$ and $y = y_1y_2 \cdots y_m$ be two strings in Σ^* with $\{x_i\}_i, \{y_j\}_j \in \Sigma$. We say $x \leq y$ if: n < m or n = m and there exists an index $i \in \{1, 2, \dots, n\}$ such that $x_j = y_j$ for all $1 \leq j \leq i-1$ and $x_i \leq y_i$. Answer the following.
 - (a) Show that (Σ^*, \leq) is a partial order. Is it a total order?
 - (b) Does there exist a least element? What is it?
 - (c) What is the greatest element?
 - (d) Consider the subset $A = \{x \in \Sigma^* | l_1 \le |x| \le l_2\}$, where $l_1, l_2 \in \mathbb{Z}^+$ with $l_1 \le l_2$. What are the minimal/maximal elements of *A*? Are there least/greatest elements?
 - (e) For the set *A* defined above, write down two different upper bounds and lower bounds. Is there a least upper bound and a greatest lower bound? What are they?
- 15. Prove the following.
 - (a) If we inverse the relation in a partial order, then also it remains a partial order.
 - (b) All finite lattices are complete.
 - (c) Any sub-lattice of a complete lattice is also complete.